Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 386-392    DOI: 10.11902/1005.4537.2015.101
  本期目录 | 过刊浏览 |
X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变
董洋洋,黄峰(),程攀,胡骞,刘静
 
Evolution of Corrosion Product Scales on an Acid Proof Pipeline Steel X65 MS in H2S Containing Environment
Yangyang DONG,Feng HUANG(),Pan CHENG,Qian HU,Jing LIU
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
全文: PDF(3765 KB)   HTML
  
摘要: 

采用场发射扫描电镜 (FE-SEM) 和X射线衍射 (XRD) 等表面测试技术,结合腐蚀失重法和电化学阻抗法对酸性环境用X65 MS管线钢在不同H2S浓度和不同pH值的5%NaCl溶液中自然浸泡24 h后所形成的腐蚀产物膜的形貌、物相组成以及界面电化学性能进行了观察和分析,并对试样在其中的腐蚀规律进行了初步探讨。结果表明,在pH值相同时,X65 MS管线钢的平均腐蚀速率随H2S浓度的增加而增大,在H2S浓度相同且当浓度比[H2S]/[H3O+]<101.5时,腐蚀速率随着pH值的升高而降低,当[H2S]/[H3O+]>101.5时,腐蚀速率与pH值和H2S浓度无关;在实验介质条件下形成的腐蚀产物膜主要是FeS的3种不同晶相,分别是非晶态FeS,晶态FeS和四方相FeS,且会随着pH值和H2S浓度的不同而发生变化,此腐蚀产物膜对钢基体不具保护性。

关键词 X65 MS管线钢H2S浓度pH值硫铁腐蚀产物膜    
Abstract

The corrosion behavior of X65 MS pipeline steel in 5%NaCl solutions with different concentrations of H2S and pH values, and the morphology, composition and phase constituent of the corrosion product scales were investigated by means of mass-loss method, electrochemical impedance spectroscope, field emission scanning electron microscopy (FE-SEM) and X-ray diffractometer (XRD). The results showed that, in the solutions with the same pH value, the average corrosion rate of X65 MS pipeline steel increased with the increasing H2S concentration. When the ratio [H2S]/[H3O+]<101.5, the average corrosion rate of the steel decreased with the increasing pH, on the contrast, which was independent to both of pH value and H2S concentration if the ratio [H2S]/[H3O+]>101.5. Besides, the formed corrosion product scales on X65 MS pipeline steel were mainly composed of amorphous ferrous sulfide, iron sulfide and mackinawite, the amount of each phase varied with the pH value and H2S concentration of the solutions. It is noted that all the corrosion product scales exhibited relatively poor protectiveness.

Key wordsX65 MS pipeline steel    H2S    pH    corrosion product scale    iron sulfides
    
ZTFLH:     
基金资助:国家自然科学基金项目 (51201119) 资助

引用本文:

董洋洋, 黄峰, 程攀, 胡骞, 刘静. X65 MS耐酸管线钢在H2S环境中腐蚀产物膜的演变[J]. 中国腐蚀与防护学报, 2015, 35(5): 386-392.
Yangyang DONG, Feng HUANG, Pan CHENG, Qian HU, Jing LIU. Evolution of Corrosion Product Scales on an Acid Proof Pipeline Steel X65 MS in H2S Containing Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 386-392.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.101      或      https://www.jcscp.org/CN/Y2015/V35/I5/386

图1  X65管线钢的显微组织像
图2  实验装置简图
图3  X65管线钢在不同H2S浓度和不同pH值下的平均失重腐蚀速率曲线
图4  在不同H2S浓度和不同pH值下所得到的腐蚀产物膜的SEM像
图5  在不同H2S浓度和不同pH值下所得到的腐蚀产物膜的XRD谱
图6  X65管线钢在不同pH值和不同H2S浓度下的EIS谱
pH C(H2S) / mmolL-1 Rs / Ωcm2 Rct / Ωcm2 Rfilm / μFcm2 CPEfilm / μFcm2 CPEdl / μFcm-2 n1 n2
3.5 0 23.99 5228 1430 640.65 990.89 1.03 0.79
0.2 13.14 3009 1593 7445 15510 0.90 0.86
2 25.71 2912 1870 18250 429.3 0.74 0.94
20 32.82 1080 2024 9939.2 3045.5 0.73 0.89
4.5 0 18.86 6393 2510 68.25 934.66 0.86 0.87
0.2 19.96 5598 2496 578.03 1963.7 0.92 0.91
2 18.79 3035 2981 10418 6077 0.71 0.65
20 34.90 1285 49.90 225.67 7199.4 0.98 0.84
5.5 0 27.88 10230 4397 1480.8 1033.8 0.72 0.82
0.2 21.92 6926 2960 1234 9898.8 0.88 0.93
2 19.69 1772 262 12810 10637 0.80 0.81
20 22.64 1389 538 269 12554 0.70 0.94
表1  X65管线钢在不同pH值和不同H2S浓度下得到的EIS拟合结果
图7  等效电路图
[1] Feng Y R, Huo C Y, Ma Q R, et al. Some aspects on west-east gas transmission pipeline steels and pipes [A]. Proc 4th Inter Pipeline Conf [C]. Calgary: American Society of Mechanical Engineers, 2002, 371
[2] Streisselberger A, Fluess P, Bauer J, et al. Modern line pipe steels designed for sophisticated subsea projects for sweet and sour gas [A]. Proc 9th Inter Off shore and Polar Engneering Conf [C]. Brest: ISOPE, 1999, 125
[3] Mendoza R, Alanis M, Perez R, et al. On the processing of Fe2C2Mn2Nb steels to produce plates for pipelines with sour gas resistance[J]. Mater. Sci. Eng., 2002, A337(1/2): 115
[4] Ma Y, Cheng L, Li Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros. Sci., 2000, 42: 1669
[5] Hernández-Espejel A, Domínguez-Crespo M A, Cabrera-Sierra R, et al. Investigations of corrosion films formed on API-X52 pipeline steel in acid sour media[J]. Corros. Sci., 2010, 52(2): 2258
[6] Shoesmith D W, Taylor P, Bally M G, et al. The formation of ferrous monosulfide polymorphs during the corrosion of iron by aqueous hydrogen sulfide at 21 ℃[J]. J. Electrochem. Soc., 1980, 127(5): 1007
[7] Yang G, Luo X, Gao L Q. Corrosion investigation and survey of the soil and water in the project of the transmission of natural gas from west to east[J]. Corros. Prot., 2003, 24(1): 29 (阳光, 罗心, 高立群. 西气东输沿线水土腐蚀勘测方法[J]. 腐蚀与防护, 2003, 24(1): 29)
[8] Cui L, Li L W, Zou H, et al. Analysis of structure and performance of X52MS pipeline steel resistant to H2S corrosion produced by WISCO[J]. J. Wuhan Univ. Sci. Technol., 2014, 37(3): 170 (崔雷, 李利巍, 邹航等. 武钢耐H2S腐蚀X52MS钢组织及性能分析[J]. 武汉科技大学学报, 2014, 37(3): 170)
[9] NACE standard TM0284 2003. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen induced Cracking [R]. Houston: NACE International, 2003
[10] Zeng R C,Han E-H,et al. Corrosion and Protection of Materials[M]. Beijing: Chemical Industry Press, 2006 (曾荣昌,韩恩厚等. 材料的腐蚀与防护[M]. 北京: 化学工业出版社, 2006)
[11] Cheng X L, Ma H Y, Zhang J P, et al. Corrosion of iron in acid solutions with hydrogen sulfide[J]. Corrosion, 1998, 54: 369
[12] Zheng Y G, Brown B, Nesic S. Electrochemical model of mild steel corrosion in a mixed H2S/CO2 aqueous environment[J]. Corrosion, 2014, 70: 351
[13] Ma H, Cheng X L, Li G Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros. Sci., 2000, 42: 1669
[14] Videm K, Kvarekval J. Stress corrosion cracking of 2205 duplex stainless steel in H2S-CO2 environment[J]. Corrosion, 1995, 51: 260
[15] Sun W, Nesic S. A mechanistic model of uniform hydrogen sulfide/carbon dioxide corrosion of mild steel[J]. Corrosion, 2009, 65: 291
[16] Guo H, He X Y, Wu Y H. Effect of H2S on corrosion behavior of X70 steel in weak acid solutions[J]. Corros. Sci. Prot. Technol.,2006, 18(4): 258 (郭红, 何晓英, 伍远辉. H2S对X70钢在弱酸性溶液中的腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2006, 18(4): 258)
[17] Castaneda H, Sosa E, Espinosa-Medina M A. Film properties and stability influence on impedance distribution during the dissolution process of low-carbon steel exposed to modified alkaline sour environment[J]. Corros. Sci., 2009, 51: 799
[18] Vedage H, Ramanarayanan T A, Munford J D, et al. Electrochemical growth of iron sulfide films in H2S-saturated chloride media[J]. Corrosion, 1993, 49: 114
[19] Liao X N, Cao F H, Chen A N, et al. In-situ investigation of atmospheric corrosion behavior of bronze under thin electrolyte layers using electrochemical technique[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(5): 1239
[1] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[2] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[3] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[4] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[5] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[6] 刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[7] 黄涛,陈小平,王向东,米丰毅,刘芮,李向阳. pH值对Q235钢在模拟土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
[8] 刘淑云, 王帅星, 杜楠, 王力强, 肖金华. X80管线钢在不同pH值红壤模拟溶液中的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 21-26.
[9] 叶超, 杜楠, 田文明, 赵晴, 朱丽. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[10] 常钦鹏, 陈友媛, 宋芳, 彭涛. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[11] 邢云颖, 刘智勇, 杜翠薇, 李晓刚, 刘然克, 朱敏. H2S浓度和pH值对X65海管钢焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 231-236.
[12] 吴志斌,魏英华,李京,孙超. 溶液状态对模拟剥离涂层底部Q345钢阴极极化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(5): 369-374.
[13] 顾宝珊;刘建华. 电化学阻抗谱研究pH值对铝合金表面铈盐转化膜形成过程的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 124-128.
[14] 陈旭;李晓刚;杜翠薇; 梁平. 溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 35-40.