Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 379-385    DOI: 10.11902/1005.4537.2014.228
  本期目录 | 过刊浏览 |
含杂质超临界CO2输送管线腐蚀的研究进展
孙冲1,王勇1,孙建波1(),蒋涛1,赵卫民1,张彦春2
2. 廊坊中油朗威工程项目管理有限公司 廊坊 065000
Investigation Progress on Corrosion Behavior of Supercr-itical CO2 Transmission Pipelines Containing Impurities in CCS
Chong SUN1,Yong WANG1,Jianbo SUN1(),Tao JIANG1,Weimin ZHAO1,Yanchun ZHANG2
1. School of Mechanical & Electronic Engineering, China University of Petroleum, Qingdao 266580, China
2. China Petroleum LONGWAY Engineering Project Management Co. Ltd., Langfang 065000, China
全文: PDF(432 KB)   HTML
  
摘要: 

综述了目前超临界CO2输送管线腐蚀的研究成果,分析了超临界CO2输送管线潜在的腐蚀风险和腐蚀的影响因素,阐述了杂质对超临界CO2流体的相行为、水化学性质、腐蚀产物膜特征及腐蚀机理的影响,并指出了现有研究中不足之处和亟待解决的科学问题。

关键词 碳捕集与封存超临界CO2杂质腐蚀膜腐蚀机理    
Abstract

A range of impurities may exist in supercritical CO2 stream of transmission pipelines for carbon capture and storage (CCS) process, which are the potential corrosive factors to induce operational risks of the supercritical CO2 transmission pipeline. The impurities induced inner side corrosion of supercritical CO2 pipelines may become the bottleneck restricting the development and application of CCS. This paper reviews the recent research progress on the corrosion behavior of pipelines for supercritical CO2 transmission. The potential corrosion risks and the impact factors on corrosion are analyzed. The influence of impurities on the phase behavior, water chemistry characteristics, corrosion scales and the corrosion mechanism of transmission pipelines is also discussed. The shortcomings in the present investigations and the key scientific problems for further research are also pointed out.

Key wordscarbon capture and storage    supercritical CO2    impurity    corrosion scale    corrosion mechanism
    
ZTFLH:     
基金资助:国家自然科学基金项目(51471188)和中央高校基本科研业务费专项资金项目(15CX06057A) 资助

引用本文:

孙冲, 王勇, 孙建波, 蒋涛, 赵卫民, 张彦春. 含杂质超临界CO2输送管线腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.
Chong SUN, Yong WANG, Jianbo SUN, Tao JIANG, Weimin ZHAO, Yanchun ZHANG. Investigation Progress on Corrosion Behavior of Supercr-itical CO2 Transmission Pipelines Containing Impurities in CCS. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 379-385.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.228      或      https://www.jcscp.org/CN/Y2015/V35/I5/379

Ref. CO2 H2O O2 SOx NOx H2S CH4 N2 CO
DYNAMIS[6] >95.5 0.05 Aquifer<4, EOR<0.01~0.1 0.01 0.01 0.02 Aquifer<4, EOR<2 <4 0.2
Kinder Morgan[11] 95 0.063 0.001 --- --- 0.001~0.02 5 4 ---
Weyburn[11] 96 0.002 <0.007 --- --- 0.9 0.7 <0.03 0.1
Sheep Moutain[11] 96.8~97.4 0.0315 --- --- --- --- 1.7 0.6~0.9 ---
Central Basin[11] 98.5 0.063 <0.001 --- --- <0.002 0.2 1.3 ---
Literature data[12] 90~95 0.001~0.063 0.001~0.1 0.01~0.15 0.01~0.15 0.01~1.50 <5 <4 0.01~4
表1  超临界CO2输送管线流体组分质量要求
Steel Temperature Pressure MPa Volume fraction of H2O / % Volume fraction of O2 / % Volume fraction of SO2 / % Volume fraction of NO2 / % Corrosion rate mma-1
X65[4] 50 4~8 Saturability 0 0 0 ~0.2
X70[14] 22 6.3 0.149 0 0 0 No
X70[14] 22 6.3 0.244 0 0 0 Slight
X65[15] 20 10 0.122 0 0 0 No
X65[16] 50 8 Saturability 0 0 0 0.38
X65[16] 50 8 Saturability 4 1 0 >7
1010[17] 45 7.58 0.244 0.01 0 0 2.3
1010[17] 45 7.58 0.244 0 0.01 0 4.6
1010[17] 45 7.58 0.244 0 0 0.01 11.6
X65[18] 50 8 0.159 4 1 0 3.7
X70[19] 50 10 Saturability 0.1 0.2~2 0 0.2~0.9
X65[20] 25 10 0.0488 0 0.01~0.0344 0.0096~0.0478 0.005~1.6
X70[21] 50 10 RH: 50~60% 0.1 2 0 ~0.1
表2  近年来CO2输送管线腐蚀研究结果
[1] IEA. Energy Technology Perspectives 2010, Scenarios & Strategies to 2050 (http://www.iea.org/techno/etp/etp10/English.pdf
[2] IPCC. Carbon Dioxide Capture and Storage[M]. New York: Cambridge University Press, 2005
[3] Sim S, Cole I S, Bocher F, et al. Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines[J]. Int. J. Greenh. Gas Con., 2013, 17: 534
[4] Choi Y S, Nesic S. Determining the corrosive potential of CO2 transport pipeline in high pCO2-water environments[J]. Int. J. Greenh. Gas Con., 2011, 5: 788
[5] Dooley J J, Dahowski R T, Davidson C L. Comparing existing pipeline networks with the potential scale of future U.S. CO2 pipeline networks[J]. Energy Procedia, 2009, 1: 1595
[6] De Visser E, Hendriks C, Barrio M, et al. Dynamis CO2 quality recommendations[J]. Int. J. Greenh. Gas Con., 2008, 2: 478
[7] Eldevik F, Graver B, Torbergsen L E, et al. Development of a guideline for safe, reliable and cost efficient transmission of CO2 in pipelines[J]. Energy Procedia, 2009, 1: 1579
[8] Sass B M, Farzan H, Prabhakar R, et al. Considerations for treating impurities in oxy-combustion flue gas prior to sequestration[J]. Energy Procedia, 2009, 1: 535
[9] Cole I S, Corrigan P, Sim S, et al. Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem[J]. Int. J. Greenh. Gas Con., 2011, 5: 749
[10] Zuo T, Liu X H, Jiang X, et al. Development of reasearch in corrosion on supercritical CO2 transportation pipelines[J]. Corros. Prot. Petrochem. Ind., 2011, 28(6): 1 (左甜, 刘小辉, 蒋秀等. 超临界CO2输送管道的腐蚀研究进展[J]. 石油化工腐蚀与防护, 2011, 28(6): 1)
[11] Oosterkamp A, Ramsen J. State-of-the-art overview of CO2 pipeline transport with relevance to offshore pipelines [R]. Oslo: Gassco and Shell Technology Norway, Open Polytec report: POL-O-2007-138-A, 2008
[12] Dustad A, Halseid M. Internal corrosion in dense phase CO2 transport pipelines-state of the art and the need for further R & D [A]. Corrosion/2012 [C]. Houston, Texas: NACE, 2012, 1452
[13] Gale J, Davison J. Transmission of CO2-safety and economic considerations[J]. Energy, 2004, 29(10): 1319
[14] McGrail B P, Schaef H T, Glezakou V A, et al. Water reactivity in the liquid and supercritical CO2 phase: has half the story been neglected?[J]. Energy Procedia, 2009, 1: 3415
[15] Dugstad A, Morland B, Clausen S. Corrosion of transport pipelines for CO2 -effect of water ingress[J]. Energy Procedia, 2011, 4: 3063
[16] Choi Y S, Nesic S. Effect of impurities on the corrosion behavior of carbon steel in supercritical CO2-water environments [A]. Corrosion/2010 [C]. Houston, Texas: NACE, 2010, 10196
[17] Ayello F, Evans K, Thodla R, et al. Effect of impurities on corrosion of steel in supercritical CO2 [A]. Corrosion/2010 [C]. Houston, Texas: NACE, 2010, 10193
[18] Choi Y S, Nesic S. Effect of water content on the corrosion behavior of carbon steel in supercritical CO2 phase with impurities [A]. Corrosion/ 2011 [C]. Houston, Texas: NACE, 2011, 11377
[19] Xiang Y, Wang Z, Xu C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2[J]. J. Supercrit. Fluid., 2011, 58: 286
[20] Dugstad A, Halseid M, Morland B. Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines[J]. Energy Procedia, 2013, 37: 2877
[21] Xiang Y, Wang Z, Yang X X, et al. The upper limit of moisture content for supercritical CO2 pipeline transport[J]. J. Supercrit. Fluid., 2012, 67: 14
[22] Ruhl A S, Kranzmann A. Corrosion behavior of various steels in a continuous flow of carbon dioxide containing impurities[J]. Int. J. Greenh. Gas Con., 2012, 9: 85
[23] Thodla R, Francois A, Sridhar N. Materials performance in supercritical CO2 environments [A]. Corrosion/2009 [C]. Houston, Texas: NACE, 2009, 09255
[24] Cole I S, Paterson D, Corrigan P, et al. State of the aqueous phase in liquid and supercritical CO2 as relevant to CCS pipelines[J]. Int. J. Greenh. Gas Con., 2012, 7: 82
[25] Dugstad A, Halseid M, Morland B, et al. Corrosion in dense phase CO2-the impact of depressurisation and accumulation of impurities[J]. Energy Procedia, 2013, 37: 3057
[26] Kladlaew N, Idem R, Tontiwachwuthikul P, et al. Studies on corrosion and corrosion inhibitors for amine based solvents for CO2 absorption from power plants flue gases containing CO2, O2 and SO2[J]. Energy Procedia, 2011, 4: 1761
[27] Ruhl A S N,Kranzmann A. Investigation of pipeline corrosion in pressurized CO2 containing impurities [J]. Energy Procedia, 2013, 37: 3131
[28] Dugstad A, Morland B, Clausen S. Transport of dense phase CO2 in C-steel pipelines-when is corrosion an issue [A]. Corrosion/2011 [C]. Houston, Texas: NACE, 2011, 11070
[29] Farelas F, Choi Y S, Nesic S. Effects of CO2 phase change, SO2 content and flow on the corrosion of CO2 transmission pipeline steel [A]. Corrosion/2012 [C]. Houston, Texas: NACE, 2012, 1322
[30] Xiang Y, Wang Z, Xu M H, et al. A mechanistic model for pipeline steel corrosion in supercritical CO2-SO2-O2-H2O environments[J]. J. Supercrit. Fluid., 2013, 82: 1
[31] Graedel T E. Gildes model studies of aqueous chemistry. I. Formulation and potential applications of the multi-regime model[J]. Corros. Sci., 1996, 38(12): 2153
[33] Ruhl A S, Kranzmann A. Investigation of corrosive effects of sulphur dioxide, oxygen and water vapour on pipeline steels[J]. Int. J. Greenh. Gas Con., 2013, 13: 9
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[4] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[6] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[7] 陈琳, 钟福荣, 昝金龙. 复合电解液中AZ31B镁合金的放电特性及电压滞后[J]. 中国腐蚀与防护学报, 2018, 38(2): 197-202.
[8] 夏大海, 宋诗哲, 王吉会, 高志明, 胡文彬. 食品包装用镀锡薄钢板的腐蚀机理研究进展[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[9] 王娜娜, 王锋涛, 常亮, 朱志平. 锅炉补给水中典型有机物分解规律及其对低压缸叶片腐蚀特性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 597-604.
[10] 李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[11] 张玉成,鞠新华,庞晓露,高克玮. O2浓度对钢在超临界CO2中腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 220-226.
[12] 周京, 冯芝勇, 张金玲, 王社斌. 稀土Nd含量对AM60镁合金耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 185-191.
[13] 常新龙, 刘万雷, 赖建伟, 张晓军. LD10铝合金应力腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2013, 33(4): 347-350.
[14] 杨 超, 张慧霞 郭为民 付玉彬. 添加双氧水对高强度低合金钢在海水中
腐蚀影响的研究
[J]. 中国腐蚀与防护学报, 2013, 33(3): 205-210.
[15] 郭金彪,陈阵,王璐,张婷. 少量硝酸对316L和Hastelloy C合金在循环废酸中腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2011, 31(2): 121-124.