|
|
土壤优势放线菌菌群对紫铜的腐蚀 |
李波1,2,罗学刚2( ),唐永金1,2,李梓番1,2,杨圣1,2,焦扬1,2 |
2. 西南科技大学 生物质材料教育部工程研究中心 绵阳 621010 |
|
Corrosion Behavior of the Dominant Actinomycetes in Soil on Copper |
Bo LI1,2,Xuegang LUO2( ),Yongjin TANG1,2,Zifan LI1,2,Sheng YANG1,2,Yang JIAO1,2 |
1. College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China 2. Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China |
引用本文:
李波,罗学刚,唐永金,李梓番,杨圣,焦扬. 土壤优势放线菌菌群对紫铜的腐蚀[J]. 中国腐蚀与防护学报, 2015, 35(4): 345-352.
Bo LI,
Xuegang LUO,
Yongjin TANG,
Zifan LI,
Sheng YANG,
Yang JIAO.
Corrosion Behavior of the Dominant Actinomycetes in Soil on Copper. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 345-352.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2015.016
或
https://www.jcscp.org/CN/Y2015/V35/I4/345
|
[1] | Rechard R P, Voegele M D. Evolution of repository and waste package designs for Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste[J]. Reliab. Eng. Syst. Saf., 2014, 122: 53 | [2] | Wang Q H, Liu Y, Si G H, et al. Research of container materials for high level radioactive waste[J]. Corros. Prot., 2011, 32(1): 40 (王青海, 刘艳, 司高华等. 高放废物包装容器材料腐蚀研究进展[J]. 腐蚀与防护, 2011, 32(1): 40) | [3] | Sowards J W, Mansfield E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria[J]. Corros. Sci., 2014, 87: 460 | [4] | Li X, Chen H Y, Li H Y, et al. Influence on corrosion behavior of copper in marine iron-oxidizing bacteria[J]. Microbiol. China, 2013 40(5): 749 | null | ( 李霞, 陈海燕, 李欢园等. 海洋铁细菌对紫铜腐蚀行为的影响[J].微生物学通报, 2013, 40(5): 749) | [5] | Domonell A, Brabender M, Nitsche F, et al. Community structure of cultivable protists in different grassland and forest soils of thuringia[J]. Pedobiologia, 2013, 56(1): 1 | [6] | Zhou J, Lei T. Review and prospects on methodology and affecting factors of soil microbial diversity[J]. Biodivers. Sci., 2007, 15(3): 306 (周桔, 雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望[J]. 生物多样性, 2007, 15(3): 306) | [7] | Gallagher K A, Fenical W, Jensen P R. Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes[J]. Curr. Opin. Biotechnol., 2010, 21(6): 794 | [8] | Li Y X, Zhang D, Zhang X Y, at al. Separation of soil actinomyces and 16S rDNA phylogenetic analysis[J]. J. Henan Agric. Sci., 2014, 43(3): 75 (李永欣, 张栋, 张晓瑜等. 土壤放线菌分离与16S rDNA系统发育分析[J]. 河南农业科学, 2014, 43(3): 75) | [9] | Diler E, Rouvellou B, Rioual S, et al. Characterization of corrosion products of Zn and Zn-Mg-Al coated steel in a marine atmosphere[J]. Corros. Sci., 2014, 87: 111 | [10] | Nie Y Y, Duan J Z, Du M, et al. Influence of NaN3 on cathodic oxygen reduction induced by microbe-assisted catalysis on surface of 316LSS in sea water[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 359 (聂鸳鸳, 段继周, 杜敏等. 天然海水中NaN3对316L不锈钢表面微生物膜催化阴极氧还原的影响[J]. 中国腐蚀与防护学报, 2014, 34: 359) | [11] | Wang H Z, Chen J, Zhou J Q, et al. Corrosion characteristics of welded joints of copper pipe in seawater[J]. Trans. Nonferrous Met. Soc. China, 2006, 16(4): 645 (王宏智, 陈君, 周建奇等. 紫铜海水管焊接部位在海水中的腐蚀特征[J]. 中国有色金属学报, 2006, 16(4): 645) | [12] | Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution:(I) electrochemical analysis[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346 (吴堂清, 丁万成, 曾德春等. 酸性土壤浸出液中X80钢微生物腐蚀研究:(I) 电化学分析[J]. 中国腐蚀与防护学报, 2014, 34: 346) | [13] | Wu T Q,Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution:(II) corrosion morphology and corrosion product analysis[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353 (吴堂清, 杨圃, 张明德等. 酸性土壤浸出液中X80钢微生物腐蚀研究:(II) 腐蚀形貌和产物分析[J]. 中国腐蚀与防护学报, 2014,34: 353) | [14] | Wu T, Xu J, Yan M, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution[J]. Corros. Sci., 2014, 83: 38 | [15] | Qi D M, Cheng N Y, Du X Q, et al,. Review on atmospheric corrosion of copper and copper alloys[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 389 (齐东梅, 成若义, 杜小青等. Cu及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2014, 34: 389) | [16] | Cao C N. Principles of Electrochemistry of Corrosion[M]. Beijing: Chemical Industry Press, 2008 (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008) | [17] | Werner S E, Johnson C A, Laycock N J, et al. Pitting of Type 304 stainless steee in the presence of a biofilm containing sulphate reducing bacteria[J]. Corros. Sci., 1998, 40(2): 465 | [18] | Chen B, Zheng B J, Zhang F, et al. Corrosion behavior of HSn70-1 copper alloy in SRB containing medium in atatic magnetic field[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 339 (陈碧, 郑碧娟, 张帆等. 静磁场下硫酸盐还原菌对HSn70-1铜合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34: 339) | [19] | Xu D, Li Y, Song F, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium bacillus licheniformis[J]. Corros. Sci., 2013, 77: 385 | [20] | Wang F P,Kang W L,Jing H M,et al. Principles, Methods and Application of Electrochemistry of Corrosion[M]. Beijing: Chemical Industry Press, 2008 (王凤平,康万利,敬和民等. 腐蚀电化学原理、方法及应用[M]. 北京: 化学工业出版社, 2008) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|