Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (6): 515-520    
  研究论文 本期目录 | 过刊浏览 |
1.10-菲啰啉在以HCHO为还原剂的化学镀铜体系中的作用
赵 晴 张传波 王帅星 杜 楠 赵 琳 李园园
南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
Effect of 1.10-phenanthroline on Electroless Copper Plating Using Formaldehyde as Reductant
ZHAO Qing, ZHANG Chuanbo, WANG Shuaixing, DU Nan, ZHAO Lin, LI Yuanyuan
National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(1327 KB)  
摘要: 通过实时分析镀液中HCHO含量,结合极化曲线、电化学阻抗谱及扫描Kelvin探针技术,研究了1.10-菲啰啉对化学镀铜液中HCHO利用率及镀层沉积行为的影响;采用SEM,XRD分析铜镀层微观形貌及结构。结果表明:1.10-菲啰啉能够加速HCHO的氧化,提高HCHO利用率;化学镀铜液中加入1.10-菲啰啉,能够明显降低镀液阻抗,提高混合电位下的自腐蚀电流密度,降低Cu在镀液中的表面电势,提高镀层沉积速率。镀液中加入1.5 mgL-1 1.10-菲啰啉可使HCHO利用率从28%提高到39%,镀速增加50%;1.10-菲啰啉的加入可以提高Cu(111) 晶面的择优取向程度,获得细致均匀的铜镀层。
关键词 1.10-菲啰啉化学镀铜HCHO电化学阻抗谱择优取向    
Abstract:The effects of 1.10-phenanthroline on the utilization of formaldehyde and copper deposition behavior during electroless copper plating was studied by measurement of the formaldehyde in electrolyte in real-time,  polarization curves, electrochemical impedance spectroscopy (EIS) and scanning Kelvin probe (SKP). The morphology and microstructure of copper coating was characterized by SEM and XRD. The results showed that 1.10-phenanthroline can accelerate the oxidation of formaldehyde and increase the utilization of formaldehyde. When 1.10-phenanthroline was added to electrolyte, the resistance of electrolyte reduced, the current density at mixed potential increased, the surface potential of copper at electrolyte moved negatively, and then the copper deposition rate increased. The utilization of formaldehyde rose from 28% to 39%, the deposition rate increased by 50% when 1.5 mgL-1 1.10-phenanthroline was added to electrolyte. Besides, 1.10-phenanthroline is helpful to obtain uniform and fine copper coating, and increases the preferred orientation of Cu(111).
Key words1.10-phenanthroline    electroless copper plating    formaldehyde    electrochemical
impedance spectroscopy
   preferred orientation
收稿日期: 2012-12-31     
ZTFLH:  TQ153.14  
通讯作者: 赵晴,E-mail:z_haoqing@sina.com   
作者简介: 赵晴,女,1957年生,教授,研究方向为有色金属转化膜的制备及电化学加工

引用本文:

赵晴, 张传波, 王帅星, 杜楠, 赵琳, 李园园. 1.10-菲啰啉在以HCHO为还原剂的化学镀铜体系中的作用[J]. 中国腐蚀与防护学报, 2013, 33(6): 515-520.
ZHAO Qing, ZHANG Chuanbo, WANG Shuaixing, DU Nan, ZHAO Lin, LI Yuanyuan. Effect of 1.10-phenanthroline on Electroless Copper Plating Using Formaldehyde as Reductant. Journal of Chinese Society for Corrosion and protection, 2013, 33(6): 515-520.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I6/515

[1] Garza M, Liu J, Magtoto N P, et al. Adhesion behavior of electroless deposited Cu on Pt/Ta silicate and Pt/SiO2 [J]. Appl. Surf. Sci., 2004, 222(1-4): 253-262
[2] Shacham-Diamand Y, Lopatin S. Integrated electroless metallization for ULSI [J]. Electrochim. Acta, 1999, 44(21/22): 3639-3649
[3] Zheng Y J, Zou W H, Yi D Q, et al. Technology and application of electroless copper plating [J]. Mater. Rev., 2005, 19(9): 76-79
(郑雅杰, 邹伟红, 易丹青等. 化学镀铜及其应用 [J]. 材料导报, 2005, 19(9): 76-79)
[4] Yang B, Yang F Z, Huang L, et al. Research of 2,2'-dipyridine on electroless copper plating using sodium hypophosphite as reductant [J]. Electrochemistry, 2007, 13(4): 425-430
(杨斌, 杨防祖, 黄凌等. 2,2'-联吡啶在化学镀铜中的作用研究 [J]. 电化学, 2007, 13(4): 425-430)
[5] Gan X P. Influences of K4Fe(CN)6 on electroless copper plating using hypophosphite as reducing agent [J]. J. Mater. Eng., 2009, (4): 39-44
(甘雪萍. 亚铁氰化钾对以次磷酸钠为还原剂化学镀铜的影响 [J]. 材料工程, 2009, (4): 39-44)
[6] Ma C X, Chen W X, Ma C, et al. The effect of 1.10-phenanthroline on electroless copper plating on the fabric [J]. J. Zhejiang Sci.-Tech. Univ., 2011, 28(5): 685-689
(马春霞, 陈文兴, 马春等. 1.10-菲啰啉对织物化学镀铜的影响 [J]. 浙江理工大学学报, 2011, 28(5): 685-689)
[7] Hanna F, Hamid Z A, Aal A A. Controlling factors affecting the stability and rate of electroless copper plating [J]. Mater. Lett., 2003, 58(1/2): 104-109
[8] Oita M, Matsuoka M, Iwakura C. Deposition rate and morphology of electroless copper film from solution containing 2,2'-dipyridl [J]. Electrochim. Acta, 1997, 42(9): 1435-1440
[9] Kulyk N, Cherevko S, Chung C H. Copper electroless plating in weakly alkaline electrolytes using DMAB as a reducing agent for metallization on polymer films [J]. Electrochim. Acta, 2012, 59: 179-185
[10] Lee C H, Kim A R, Koo H C, et al. Effect of 2-Mercapto-5-benzimidazolesulfonic acid in superconformal Cu electroless deposition [J]. J. Electrochem. Soc., 2009, 156(6): D207-D210
[11] Lin Y M, Yen S C. Effect of additive and chelating agent on electroless copper plating [J]. Appl. Surf. Sci., 2001, 178: 116-126
[12] Yang F Z, Yang B, Lu B B, et al. Electrochemical study on electroless copper plating using sodium hypophosphite as reductant [J]. Acta Phys.-Chim. Sin., 2006, 22(11): 1317-1320
(杨防祖, 杨斌, 陆彬彬等. 以次亚磷酸钠为还原剂化学镀铜的电化学研究 [J]. 物理化学学报, 2006, 22(11): 1317-1320)
[13] Gu X, Wang Z C, Lin C J. An electrochemical study of the effects of chelating agents and additives on electroless copper plating [J]. Electrochemistry, 2004, 10(1): 14-19
(谷新, 王周成, 林昌健. 络合剂和添加剂对化学镀铜影响的电化学研究 [J]. 电化学, 2004, 10(1): 14-19)
[14] Vandenmeerakker J E A M. On the mechanism of electroless plating. I. Oxidation of formaldehyde at different electrode surfaces [J]. J. Appl. Electrochem., 1981, 11(3): 387-393
[15] Vandenmeerakker J E A M. On the mechanism of electroless plating. II. One mechanism for different reductants [J]. J. Appl. Electrochem., 1981, 11(3): 395-400
[16] de Wit J H W. Local potential measurements with the SKPFM on aluminum alloy [J]. Electrochim. Acta, 2004, 49(17/18): 2841-2850
[17] Kondo K, Ishikawa J, Takenaka O, et al. Acceleration of electroless copper deposition in the presence of excess triethanolamine [J]. J. Electrochem. Soc., 1991, 138(12): 3629-3633
[18] Gu M, Xian X H. The preparation of copper electrodeposits with (110) lattice plane fully preferred orientation [J]. Acta Phys.-Chim. Sin., 2006, 22(3): 378-382
(辜敏, 鲜晓红. (110) 晶面全择优取向Cu镀层的制备及其条件优化 [J]. 物理化学学报, 2006, 22(3): 378-382)
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[7] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[8] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[9] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[10] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[11] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[12] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[13] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[14] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[15] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.