Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (6): 437-442    
  技术报告 本期目录 | 过刊浏览 |
动态应变时效对核电材料环境致裂影响的研究现状与进展
谭季波,吴欣强,韩恩厚
中国科学院金属研究所金属腐蚀与防护国家重点实验室 辽宁省核电材料安全与评价技术重点实验室 沈阳
REVIEW ON RELATIONSHIP BETWEEN DYNAMIC STRAIN AGING AND ENVIRONMENTALLY ASSISTED CRACKING OF STRUCTURAL MATERIALS USED IN NUCLEAR POWER PLANTS
TAN Jibo, WU Xinqiang, HAN En-Hou
State Key Laboratory for Corrosion and Protection, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(458 KB)  
摘要: 

综述了核级碳钢、低合金钢、不锈钢发生动态应变时效(DSA)的反常特征、影响因素及机制,讨论了DSA与高温高压水环境因素的交互作用对核电材料环境致裂的可能影响。指出了当前研究中存在的问题及进一步的研究方向。

关键词 动态应变时效核电材料高温高压水环境致裂腐蚀疲劳应力腐蚀    
Abstract

The paper summarized the anomalous deformation characteristics, influencing factors and mechanisms of dynamic strain aging (DSA) in nuclear-grade carbon steels, low alloy steels and austenitic stainless steels. The possible effects of the interaction between DSA and high temperature water on environmentally assisted cracking of structural materials used in nuclear power plants have been discussed. The coming possible research topics and directions are also proposed.

Key wordsdynamic strain aging, nuclear-grade materials    high temperature high pressure water    environmentally assisted cracking    corrosion fatigue    stress corrosion cracking
收稿日期: 2012-01-09     
ZTFLH:  TG172.8  
基金资助:

国家科技重大专项(2010ZX06004-009)和国家重点基础研究发展计划项目(2011CB610506)及中国科学院金属研究所创新基金联合资助

通讯作者: 吴欣强     E-mail: xqwu@imr.ac.cn
Corresponding author: WU Xinqiang     E-mail: xqwu@imr.ac.cn
作者简介: 谭季波,男,1988年生,硕士生,研究方向为核电材料高温高压水腐蚀疲劳

引用本文:

谭季波,吴欣强,韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
TAN Jibo, WU Xinqiang, HAN En-Hou. REVIEW ON RELATIONSHIP BETWEEN DYNAMIC STRAIN AGING AND ENVIRONMENTALLY ASSISTED CRACKING OF STRUCTURAL MATERIALS USED IN NUCLEAR POWER PLANTS. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 437-442.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I6/437

[1] Kim I S, Kang S S. Dynamic strain aging in SA508-class 3 pressure vessel steel [J]. Int. J. Pres. Ves. Pip., 1995, 62(2): 123-129


[2] Lee B H, Kim I S. Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl.3 forging steel [J]. J. Nucl. Mater., 1995, 226(1-2): 216-225

[3] Xu S, Wu X Q, Han E H, et al. Effects of dynamic strain aging on mechanical properties of SA508 class 3 reactor pressure vessel steel [J]. J. Mater. Sci, 2009, 44(11): 2882-2889

[4] Wu X Q, Katada Y. Role of dynamic strain aging in corrosion fatigue of low-alloy pressure vessel steel in high temperature water [J]. J. Mater. Sci, 2007, 42(2): 633-639

[5] Hong S G, Lee S B. Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel [J], J. Nucl. Mater., 2004, 328(2-3): 232-242

[6] Hong S G, Lee S B. Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel [J], J. Nucl. Mater., 2005, 340(2-3): 307-314

[7] Xu S, Wu X Q, Han E H. A review of corrosion fatigue of steels for LWR plant in high temperature and high pressure water[J]. Corros. Sci. Prot. Technol, 2007, 19(5): 345-349

(徐松, 吴欣强, 韩恩厚. 核电材料高温高压水腐蚀疲劳研究现状及进展[J]. 腐蚀科学与防护技术, 2007, 19(5): 345-349)

 

[8] Xu S, Wu X Q, Han E H. Low cycle fatigue fracture for 316Ti stainless steel in high temperature and pressure water[J]. J. Chin. Soc. Corros. Prot, 2010, 30(2): 119-123

 (徐松, 吴欣强, 韩恩厚. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹端口研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 119-123)

[9] Xu S, Wu X Q, Han E H. Corrosion fatigue of nuclear-grade stainless steel in high temperature water and its environment fatigue design model[J]. Acta Metall Sin., 2011, 47(7): 790-796

(徐松, 吴欣强, 韩恩厚. 核级不锈钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2011, 47(7): 790-796)

[10] Li G F, Li G J, Fang K W. Stress corrosion cracking behavior of dissimilar metal weld A508/52M/316L in high temperature water environment[J]. Acta Metall. Sin., 2011, 47(7): 797-803

(李光福, 李冠军, 方可伟. 异材焊接件A508/52M/316L在高温水环境中的应力腐蚀开裂[J]. 金属学报, 2011, 47(7): 797-803)

[11] Chopra O K, Shack W J. Low-cycle fatigue of piping and pressure vessel steels in LWR environments [J]. Nucl. Eng. Des, 1998, 184(1): 49-76

[12] Chopra O K, Shack W J. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels [A]. Nuclear Regulatory Commission[C]. Washington. 1998. 1

[13] Andresen P L, Briant C L. Environmentally assisted cracking of types 304L/316L/316NG stainless steel in 288℃ water [J]. Corrosion, 1989, 45(6): 448-463

[14] McCormick P G. A model for the portevin-le chatelier effect in substitutional alloy [J]. Acta Metall., 1972, 20(3): 351-354

[15] Cottrell A H, Hunter S C. Nabarro F R N. Dislocations and plastic flow in crystals [J]. Phil. Mag. Lett, 1953, 44: 1064-1067

[16] Wilson D V. Precipitation and growth of carbide particles in a cyclically strained low carbon steel [J]. Acta Metall., 1973, 21(5): 673-682

[17] Pink E, Grinberg A. Stress drops in serrated flow curves of A15Mg [J]. Acta Metall., 1982, 30(12): 2153-2160

[18] Venkadesan S, Phaniraj C, Sivaprasad P V, et al. Activation energy for serrated flow in a 15Cr-15Ni Ti-modified austenitic stainless steel [J]. Acta Metall., 1992, 40(3): 569-580

[19] Atkinson J D, Yu J. The role of dynamic strain-ageing in the environment assisted cracking observed in pressure vessel steels [J]. Fatigue Fract. Eng. M, 1997, 20(1): 1-12

[20] Taheri A K, Maccagno T M, Jonas J J. Dynamic strain aging and the wire drawing of low carbon steel rods [J]. ISIJ Int., 1995, 35(12): 1532-1540

[21] Kim J W, Kim I S. Investigation of dynamic strain aging in SA106 Gr.C piping steel [J]. Nucl. Eng. Des., 1997, 172(1-2): 49-59

[22] Samuel K G, Mannan S L, Rodriguez P. Serrated yielding in AISI 316 stainless steel [J]. Acta Metall., 1988, 36(8): 2323-2327

[23] Chu W Y, Wang Y B, Qiao L J. Interaction between blue brittleness and stress corrosion cracking [J]. J. Nucl. Mater., 2000, 280(2): 250-254

[24] Seifert H P, Ritter S. Stress corrosion cracking of low-alloy reactor pressure vessel steels under boiling water reactor conditions [J]. J. Nucl. Mater., 2008, 372(1): 114-131

[25] Seifert H P, Ritter S. Corrosion fatigue crack growth behavior of low-alloy reactor pressure vessel steels under boiling water reactor conditions [J]. Corros. Sci., 2008, 50(7): 1884-1899

[26] Heldt J, Seifert H P. Stress corrosion cracking of low-alloy, reactor pressure vessel steels in oxygenated, high-temperature water [J]. Nucl. Eng. Des., 2001, 206(1): 57-89

[27] Weisse M, Wamukwamab C K, Christ H J, et al. The cyclic deformation and fatigue behaviour of the low carbon steel SAE 1045 in the temperature regime of dynamic strain ageing [J]. Acta Metall. Mater., 1993, 41(7): 2227-2233

[28] Srinivasan V S, Valsan M, Sandhya R S, et al. High temperature time-dependent low cycle fatigue behaviour of a type 316L(N) stainless steel [J]. Int. J. Fatigue, 1999, 21(1): 11-21

[29] Hong S G, Lee S B. The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel influence of dynamic strain aging [J]. Int. J. Fatigue, 2004, 26(8): 899-910

[30] Hong S G, Lee S B. Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel [J]. Int. J. Fatigue, 2005, 27(10-12): 1420-1424

[31] Srinivasan V S, Sandhya R, Valsan M, et al. The influence of dynamic strain aging on stress response and strain-life relationship in low cycle fatigue of 316(N) stainless steel [J]. Sci. Mater., 1997, 37(10): 1593-1598

[32] Kim D W, Kim W G, Ryu W S. Role of dynamic strain aging on low cycle fatigue and crack propagation of type 316L(N) stainless steel [J]. Int. J. Fatigue, 2003, 25(9-11): 1203-1207

[33] Mohan R, Marschall C. Cracking instabilities in a low-carbon steel susceptible to dynamic strain aging [J]. Acta Metall., 1998, 46(6): 1933-1948

[34] Huang J Y, Hwang J R, Yeh J J, et al. Dynamic strain aging and grain size reduction effects on the fatigue resistance of SA533B3 steels [J]. J. Nucl. Mater., 2004, 324(2-3): 140-151

[35] Yeh J J, Huang J Y, Kuo R C. Temperature effects on low-cycle fatigue behavior of SA533B steel in simulated reactor coolant environments [J]. Mater. Chem. Phys., 2007, 104(1): 125-132

[36] Wu X Q, Katada Y. Role of inclusions and carbide bands in corrosion fatigue of pressure vessel steel in high-temperature water [J].Corrosion, 2004, 60(11): 1045-1057

[37] Wu X Q, Katada Y. Influence of cyclic strain rate on environmentally assisted cracking behavior of pressure vessel steel in high-temperature water [J]. Mater. Sci. Eng., 2004, 379(1-2): 58-71

[38] Wu X Q, Katada Y. Inclusion-involved fatigue cracking in high temperature water [J]. Mater. Corros., 2005, 56(5): 305-311

[39] Wu X Q, Katada Y. Strain-rate dependence of low cycle fatigue behavior in a simulated BWR environment [J]. Corros. Sci., 2005, 47(6): 1415-1428

[40] Wu X Q, Kim I S. Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl. 3 pressure vessel steel [J]. Mater. Sci. Eng., 2003, 348(1-2): 309-318

[41] Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity--a mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176(1-2): 191-202

[42] Wu X Q, Katada Y, Lee S G, et al. Hydrogen-involved tensile and cyclic deformation behavior of low-alloy pressure vessel steel [J]. Metall. Mater. Trans., 2004, 35(5): 1477-1486

[43] Wu X Q, Katada Y. Cyclic cracking behavior of low-alloy pressure vessel steel in simulated BWR water [J]. J. Nucl. Mater., 2004, 328(2-3): 115-123

[44] Wu X Q, Han E H, Ke W, et al. Effects of loading factors on environmental fatigue behavior of low-alloy pressure vessel steels in simulated BWR water [J]. Nucl. Eng. Des., 2007, 237(12-13): 1452-1459

[45] Katada Y, Nagata N. The effect of temperature on fatigue crack growth behavior of a low alloy pressure vessel steel in simulated BWR environment [J]. Corros. Sci., 1985, 25(8-9): 693-704

[46] Katada Y, Nagata N, Sato S. Optical observations of fatigue crack growth behaviour of a low-alloy pressure vessel steel in high-temperature pressurized water [J]. Int. J. Pres. Ves. Pip., 1991, 48(1): 37-52

[47] Seifert H P, Ritter S. Strain-induced corrosion cracking behaviour of low-alloy steels under boiling water reactor conditions [J]. J. Nucl. Mater., 2008, 378(3): 312-326
[1] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[2] 廖家鹏,吴欣强. 核电材料高温高压水缺口疲劳性能研究现状与进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[3] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[4] 向超,王家贞,付华萌,韩恩厚,张海峰,王俭秋,张志明. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.
[5] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[6] 朱若林,张志明,王俭秋,韩恩厚. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[7] 刘晓强,徐雪莲,谭季波,王媛,吴欣强,郑宇礼,孟凡江,韩恩厚. 反应堆冷却剂环境对690合金传热管疲劳性能影响研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[8] 陈东旭, 吴欣强, 韩恩厚. 缝隙腐蚀研究进展及核电材料的缝隙腐蚀问题[J]. 中国腐蚀与防护学报, 2014, 34(4): 295-300.
[9] 马成, 彭群家, 韩恩厚, 柯伟. 核电结构材料应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 37-45.
[10] 梁瑞, 张新燕, 李淑欣, 姜峰, 陈帅甫. 半椭球蚀坑对圆棒应力集中的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[11] 彭青姣,张志明,王俭秋,韩恩厚,柯伟. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 217-222.
[12] 徐松;吴欣强;韩恩厚;柯伟. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹断口研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 119-123.
[13] 周华茂 王俭秋 张波 韩恩厚 臧启山. 轧制AZ31B镁合金腐蚀疲劳过程中的声发射信号分析[J]. 中国腐蚀与防护学报, 2009, 29(2): 81-87.
[14] 张强 . 304不锈钢微尺度试样的腐蚀疲劳性能[J]. 中国腐蚀与防护学报, 2008, 28(2): 99-103 .
[15] 张正贵 . 高强度铝合金构件腐蚀疲劳失效分析[J]. 中国腐蚀与防护学报, 2008, 28(1): 48-52 .