[1] Kim I S, Kang S S. Dynamic strain aging in SA508-class 3 pressure vessel steel [J]. Int. J. Pres. Ves. Pip., 1995, 62(2): 123-129 [2] Lee B H, Kim I S. Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl.3 forging steel [J]. J. Nucl. Mater., 1995, 226(1-2): 216-225 [3] Xu S, Wu X Q, Han E H, et al. Effects of dynamic strain aging on mechanical properties of SA508 class 3 reactor pressure vessel steel [J]. J. Mater. Sci, 2009, 44(11): 2882-2889 [4] Wu X Q, Katada Y. Role of dynamic strain aging in corrosion fatigue of low-alloy pressure vessel steel in high temperature water [J]. J. Mater. Sci, 2007, 42(2): 633-639 [5] Hong S G, Lee S B. Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel [J], J. Nucl. Mater., 2004, 328(2-3): 232-242 [6] Hong S G, Lee S B. Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel [J], J. Nucl. Mater., 2005, 340(2-3): 307-314 [7] Xu S, Wu X Q, Han E H. A review of corrosion fatigue of steels for LWR plant in high temperature and high pressure water[J]. Corros. Sci. Prot. Technol, 2007, 19(5): 345-349 (徐松, 吴欣强, 韩恩厚. 核电材料高温高压水腐蚀疲劳研究现状及进展[J]. 腐蚀科学与防护技术, 2007, 19(5): 345-349) [8] Xu S, Wu X Q, Han E H. Low cycle fatigue fracture for 316Ti stainless steel in high temperature and pressure water[J]. J. Chin. Soc. Corros. Prot, 2010, 30(2): 119-123 (徐松, 吴欣强, 韩恩厚. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹端口研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 119-123) [9] Xu S, Wu X Q, Han E H. Corrosion fatigue of nuclear-grade stainless steel in high temperature water and its environment fatigue design model[J]. Acta Metall Sin., 2011, 47(7): 790-796 (徐松, 吴欣强, 韩恩厚. 核级不锈钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2011, 47(7): 790-796) [10] Li G F, Li G J, Fang K W. Stress corrosion cracking behavior of dissimilar metal weld A508/52M/316L in high temperature water environment[J]. Acta Metall. Sin., 2011, 47(7): 797-803 (李光福, 李冠军, 方可伟. 异材焊接件A508/52M/316L在高温水环境中的应力腐蚀开裂[J]. 金属学报, 2011, 47(7): 797-803) [11] Chopra O K, Shack W J. Low-cycle fatigue of piping and pressure vessel steels in LWR environments [J]. Nucl. Eng. Des, 1998, 184(1): 49-76 [12] Chopra O K, Shack W J. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels [A]. Nuclear Regulatory Commission[C]. Washington. 1998. 1 [13] Andresen P L, Briant C L. Environmentally assisted cracking of types 304L/316L/316NG stainless steel in 288℃ water [J]. Corrosion, 1989, 45(6): 448-463 [14] McCormick P G. A model for the portevin-le chatelier effect in substitutional alloy [J]. Acta Metall., 1972, 20(3): 351-354 [15] Cottrell A H, Hunter S C. Nabarro F R N. Dislocations and plastic flow in crystals [J]. Phil. Mag. Lett, 1953, 44: 1064-1067 [16] Wilson D V. Precipitation and growth of carbide particles in a cyclically strained low carbon steel [J]. Acta Metall., 1973, 21(5): 673-682 [17] Pink E, Grinberg A. Stress drops in serrated flow curves of A15Mg [J]. Acta Metall., 1982, 30(12): 2153-2160 [18] Venkadesan S, Phaniraj C, Sivaprasad P V, et al. Activation energy for serrated flow in a 15Cr-15Ni Ti-modified austenitic stainless steel [J]. Acta Metall., 1992, 40(3): 569-580 [19] Atkinson J D, Yu J. The role of dynamic strain-ageing in the environment assisted cracking observed in pressure vessel steels [J]. Fatigue Fract. Eng. M, 1997, 20(1): 1-12 [20] Taheri A K, Maccagno T M, Jonas J J. Dynamic strain aging and the wire drawing of low carbon steel rods [J]. ISIJ Int., 1995, 35(12): 1532-1540 [21] Kim J W, Kim I S. Investigation of dynamic strain aging in SA106 Gr.C piping steel [J]. Nucl. Eng. Des., 1997, 172(1-2): 49-59 [22] Samuel K G, Mannan S L, Rodriguez P. Serrated yielding in AISI 316 stainless steel [J]. Acta Metall., 1988, 36(8): 2323-2327 [23] Chu W Y, Wang Y B, Qiao L J. Interaction between blue brittleness and stress corrosion cracking [J]. J. Nucl. Mater., 2000, 280(2): 250-254 [24] Seifert H P, Ritter S. Stress corrosion cracking of low-alloy reactor pressure vessel steels under boiling water reactor conditions [J]. J. Nucl. Mater., 2008, 372(1): 114-131 [25] Seifert H P, Ritter S. Corrosion fatigue crack growth behavior of low-alloy reactor pressure vessel steels under boiling water reactor conditions [J]. Corros. Sci., 2008, 50(7): 1884-1899 [26] Heldt J, Seifert H P. Stress corrosion cracking of low-alloy, reactor pressure vessel steels in oxygenated, high-temperature water [J]. Nucl. Eng. Des., 2001, 206(1): 57-89 [27] Weisse M, Wamukwamab C K, Christ H J, et al. The cyclic deformation and fatigue behaviour of the low carbon steel SAE 1045 in the temperature regime of dynamic strain ageing [J]. Acta Metall. Mater., 1993, 41(7): 2227-2233 [28] Srinivasan V S, Valsan M, Sandhya R S, et al. High temperature time-dependent low cycle fatigue behaviour of a type 316L(N) stainless steel [J]. Int. J. Fatigue, 1999, 21(1): 11-21 [29] Hong S G, Lee S B. The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel influence of dynamic strain aging [J]. Int. J. Fatigue, 2004, 26(8): 899-910 [30] Hong S G, Lee S B. Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel [J]. Int. J. Fatigue, 2005, 27(10-12): 1420-1424 [31] Srinivasan V S, Sandhya R, Valsan M, et al. The influence of dynamic strain aging on stress response and strain-life relationship in low cycle fatigue of 316(N) stainless steel [J]. Sci. Mater., 1997, 37(10): 1593-1598 [32] Kim D W, Kim W G, Ryu W S. Role of dynamic strain aging on low cycle fatigue and crack propagation of type 316L(N) stainless steel [J]. Int. J. Fatigue, 2003, 25(9-11): 1203-1207 [33] Mohan R, Marschall C. Cracking instabilities in a low-carbon steel susceptible to dynamic strain aging [J]. Acta Metall., 1998, 46(6): 1933-1948 [34] Huang J Y, Hwang J R, Yeh J J, et al. Dynamic strain aging and grain size reduction effects on the fatigue resistance of SA533B3 steels [J]. J. Nucl. Mater., 2004, 324(2-3): 140-151 [35] Yeh J J, Huang J Y, Kuo R C. Temperature effects on low-cycle fatigue behavior of SA533B steel in simulated reactor coolant environments [J]. Mater. Chem. Phys., 2007, 104(1): 125-132 [36] Wu X Q, Katada Y. Role of inclusions and carbide bands in corrosion fatigue of pressure vessel steel in high-temperature water [J].Corrosion, 2004, 60(11): 1045-1057 [37] Wu X Q, Katada Y. Influence of cyclic strain rate on environmentally assisted cracking behavior of pressure vessel steel in high-temperature water [J]. Mater. Sci. Eng., 2004, 379(1-2): 58-71 [38] Wu X Q, Katada Y. Inclusion-involved fatigue cracking in high temperature water [J]. Mater. Corros., 2005, 56(5): 305-311 [39] Wu X Q, Katada Y. Strain-rate dependence of low cycle fatigue behavior in a simulated BWR environment [J]. Corros. Sci., 2005, 47(6): 1415-1428 [40] Wu X Q, Kim I S. Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl. 3 pressure vessel steel [J]. Mater. Sci. Eng., 2003, 348(1-2): 309-318 [41] Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity--a mechanism for hydrogen-related fracture [J]. Mater. Sci. Eng., 1994, 176(1-2): 191-202 [42] Wu X Q, Katada Y, Lee S G, et al. Hydrogen-involved tensile and cyclic deformation behavior of low-alloy pressure vessel steel [J]. Metall. Mater. Trans., 2004, 35(5): 1477-1486 [43] Wu X Q, Katada Y. Cyclic cracking behavior of low-alloy pressure vessel steel in simulated BWR water [J]. J. Nucl. Mater., 2004, 328(2-3): 115-123 [44] Wu X Q, Han E H, Ke W, et al. Effects of loading factors on environmental fatigue behavior of low-alloy pressure vessel steels in simulated BWR water [J]. Nucl. Eng. Des., 2007, 237(12-13): 1452-1459 [45] Katada Y, Nagata N. The effect of temperature on fatigue crack growth behavior of a low alloy pressure vessel steel in simulated BWR environment [J]. Corros. Sci., 1985, 25(8-9): 693-704 [46] Katada Y, Nagata N, Sato S. Optical observations of fatigue crack growth behaviour of a low-alloy pressure vessel steel in high-temperature pressurized water [J]. Int. J. Pres. Ves. Pip., 1991, 48(1): 37-52 [47] Seifert H P, Ritter S. Strain-induced corrosion cracking behaviour of low-alloy steels under boiling water reactor conditions [J]. J. Nucl. Mater., 2008, 378(3): 312-326 |