Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (1): 48-53    
  研究报告 本期目录 | 过刊浏览 |
天然海水中微生物膜对316L不锈钢腐蚀行为研究
刘彬1,2,段继周1,侯保荣1
1. 中国科学院海洋研究所 海洋腐蚀与防护研究发展中心 山东省腐蚀科学重点实验室 青岛 266071
2. 中国科学院研究生院 北京 100049
MICROBIOLOGICALLY INFLUENCED CORROSION OF 316L SS BY MARINE BIOFILMS IN SEAWATER
LIU Bin1,2, DUAN Jizhou1, HOU Baorong1
1. Marine Corrosion and Protection Center, Institute of Oceanology, Chinese Academy of Sciences,Qingdao 266071
2. Graduate School of Chinese Academy of Sciences, Beijing 100049
全文: PDF(948 KB)  
摘要: 采用电化学技术包括开路电位、电化学阻抗谱、动电位极化、循环极化、表面表征技术、包括扫描电镜和能谱分析研究了316L不锈钢在天然海水中微生物膜影响的初期腐蚀行为。研究表明,海洋微生物在不锈钢表面发生附着形成生物膜。在天然海水中不锈钢的开路电位正移约450mV,而在灭菌海水中不锈钢的开路电位基本保持不变。电化学阻抗和极化实验结果指出,海洋微生物膜使不锈钢阻抗增加,点蚀电位升高,生物膜抑制了不锈钢的腐蚀发生。这种抑制作用经历了一个先变大后减小的过程。天然海水中,海洋生物膜的附着和其代谢产物作用使不锈钢的耐蚀性能得到提高,这一耐蚀性能的提高与生物膜影响的阳极抑制作用有关。
关键词 天然海水生物膜316L不锈钢腐蚀电位正移腐蚀抑制    
Abstract:The microbiologically influenced corrosion behaviors of marine microorganism on 316L SS were studied by the immersion experiments in the nature seawater using the open circuit potential (Eocp), electrochemical impedance spectroscopy (EIS), potentiodynamic anodic and cyclic polarization curves, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) methods. It was observed that marine biofilm was formed by microorganisms on the surface of stainless steel. It was confirmed that Eocp of 316L SS in nature seawater shifted in noble direction nearly 450 mV. However, in sterile seawater, Eocp was stable in experimental period. The presence of marine biofilms on the stainless steel played a role in inhibiting the initial corrosion according to the decrease in corrosion current densities obtained from the polarization curves, the increase of the polarization resistance (Rp) obtained from EIS and the increase of the pitting corrosion potential from the potentiodynamic polarization by the comparison test of 316L SS immersed in nature seawater and sterile seawater. It was suggested that marine biofilm and its metabolites improved the superficial anticorrosive properties of 316L SS by inhibiting the anodic dissolution behavior of stainless steel.
Key wordsseawater    biofilms    316L stainless steel    ennoblement    corrosion inhibition
收稿日期: 2010-11-04     
ZTFLH: 

TG172.5

 
基金资助:

国家自然科学基金项目(40976046)和中国科学院知识创新工程重要方向项目(KZCX2-EW-205)资助

通讯作者: 段继周     E-mail: duanjz@qdio.ac.cn
Corresponding author: DUAN Jizhou     E-mail: duanjz@qdio.ac.cn
作者简介: 刘彬,男,1986年生,硕士生,研究方向为海洋微生物腐蚀

引用本文:

刘彬,段继周,侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53.
LIU Ban, DUAN Ji-Zhou, HOU Bao-Rong. MICROBIOLOGICALLY INFLUENCED CORROSION OF 316L SS BY MARINE BIOFILMS IN SEAWATER. J Chin Soc Corr Pro, 2012, 32(1): 48-53.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I1/48

[1] Iverson W P. Microbial corrosion of metals [J]. Adv. Appl.Microb., 1987, 32: 1-36

[2] Little B J, Wagner P, Mansfeld F. Microbiologically influenced corrosion of metals and alloys [J]. Int. Mater. Rev.,1991, 36 (6): 253-272

[3] Duan J, Wu S, Zhang X, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochim.Acta, 2008, 54(1), 22-28

[4] Sun C, Han E H, Wang X. Effects of SRB on corrosion of carbon steel in seamud [J]. Corros. Sci. Prot. Technol., 2003,15(2): 104-106

    (孙成, 韩恩厚, 王旭.海泥中硫酸盐还原菌对碳钢腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2003,15(2): 104-106)

[5] Liu J H, Liang X, Li S M. Corrosion action of sulfate-reducting bacteria on two stainless steels [J]. Acta Metall.Sin., 2005, 41(5): 545-55

    (刘建华, 梁馨, 李松梅.硫酸盐还原菌对两种不锈钢的腐蚀作用[J]. 金属学报, 2005, 41(5):545-55)

[6] Niu G H, Yin Y S, Chang X T. Electrochemical corrosionbehavior of 316 stainless steel in marine microbial medium [J].Chem. Res., 2008, 19(3): 83-86

    (牛桂华, 尹衍升, 常雪婷.海洋微生物对316不锈钢的电化学腐蚀行为[J]. 化学研究,2008, 19(3):83-86)

[7] Wu J Y, Chai K, Xiao W L, et al. The single effect of microbe on the corrosion behaviors of 25 steel in seawater [J]. Acta Metall. Sin., 2010, 46(6): 755-760

    (吴进怡, 柴柯, 肖伟龙等.25钢在海水中的微生物单因素腐蚀[J]. 金属学报, 2010, 46(6): 755-760)

[8] Xiao W L, Chai K, Yang Y H, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition[J]. J. Chin. Soc. Corros. Prot.,2010, 30(5): 359-363

    (肖伟龙, 柴柯, 杨雨辉等.25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响[J].中国腐蚀与防护学报, 2010, 30(5): 359-363)

[9] Moradi M, Duan J, Ashassi-Sorkhabi H, et al. De-alloying of 316 stainless steel in the presence of a mixture of metal-oxidizing bacteria[J]. Coros. Sci., 2011, 53(12), 4282-4290

[10] Hernandez G, Kucera V, Thierry D, et al. Corrosion inhibition of steel by bacteria [J]. Corrosion, 1994, 50(8): 603-608

[11]    Jayaraman A, Ornek D, Duarte D A, et al. Axenic aerobic biofilms inhibit corrosion of copper and aluminum [J]. Appl.Microb. Biotechnol., 1999, 52: 787-790

[12] Ismail K M, Gehrig R, Jayaraman A, et al. Corrosion control of mild steel by aerobic bacteria under continuous flow conditions [J]. Corrosion, 2002, 58 (5): 417-423

[13] Jayaraman A, Chang E T, Earthman J C, et al. Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion [J]. Appl. Microb. Biotechnol., 1997, 48: 11-17

[14] Scotto V, Cintio R D, Marcenaro G. The influence of marine aerobic microbial film on stainless steel corrosion behaviour[J]. Corros. Sci., 1985, 25: 185-194

[15] Johnsen R, Bardal E. Cathodic properties of different stainless steels in natural seawater [J]. Corrosion, 1985, 41(5):296-302

[16] Dexter S C, Gao G Y. Effect of seawater biofilms corrosion potential and oxygen reduction of stainless steel [J].Corrosion, 1988, 44(10): 717-723

[17] Scotto V, Lai M E. The ennoblement of stainless steels in seawater: A likely explanation coming from the field [J]. Corros.Sci., 1998, 40: 1007-1018

[18] Le Bozec N, Compere C, Her M L, et al. Influence of stainless steel surface treatment on the oxygen reduction in seawater[J]. Corros. Sci., 2001, 43: 765-786

[19] Dickinson W H, Caccavo F, Lewandowski Z. The ennoblement of stainless steel by manganic oxide biofouling [J]. Corros. Sci.,1996, 38(8): 1407-1422

[20] Xu F, Duan J, Hou B. Electron transfer process from marine biofilms to graphite electrodes in seawater[J].Bioelectrochemistry, 2010, 78 (1): 92-95

[21] Little B J, Lee J S, Ray R I. The influence of marine biofilms on corrosion: A concise review[J].Electrochim. Acta, 2008,54(1): 2-7

[22] Wu JH, Liu G Z, Yu H, et al. Electrochemical methods for study of microbiologically influenced corrosion in marine environment [J]. Corros. Prot., 1999, 20(5): 231-237

     (吴建华,刘光洲, 于辉等. 海洋微生物腐蚀的电化学研究方法[J]. 腐蚀与防护, 1999,20(5): 231-237)

[23] Gerald S F, Robert G K. Passivity-induced ennoblement[A]. A Compilation of Special Topic Prepared for the Waste Package Materials Performance Peer Review[C]. USA, 2002, 129

[24] Song S Z. Methods of Corrosion Electrochemistry Research [M]. Beijing: Chemistry Industry Press, 1988: 187

     (宋诗哲.腐蚀电化学研究方法[M]. 化学工业出版社, 1988: 187)

[25] Molica A, Trevis A. Correlation between the formation of a primary film and the modification of the cathodic surface steel in seawater [A]. Proc. 4th Int. Cong. Marine Corros. Foul. [C].Juan-Les-Prins. Amibes, 1976, 351

[26] Wang J, Li X B, Wang W. The effect of microorganism attachment on the open-circuit-potential of passive metals in seawater [J]. J. Chin. Soc. Corros. Prot., 2004, 24(5): 262-266

     (王佳, 李相波, 王伟. 海水环境中微生物附着对钝性金属开路电位的影响[J]. 中国腐蚀与防护学报,2004, 24(5): 262-266)
[1] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[3] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[4] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[5] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[6] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[7] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[8] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[9] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[10] 丁祥彬,孙华,俞国军,周兴泰. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[11] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[12] 陈宇, 陈旭, 刘彤, 王冠夫, 王彦亮. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
[13] 常钦鹏, 陈友媛, 宋芳, 彭涛. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[14] 王永霞, 向红亮, 杨彩萍, 刘东. 含铜双相不锈钢在无菌/含菌环境下的耐蚀性研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 558-565.
[15] 聂鸳鸳, 段继周, 杜敏, 侯保荣. 天然海水中NaN3对316L不锈钢表面微生物膜催化阴极氧还原的影响[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.