Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (6): 437-441    
  研究报告 本期目录 | 过刊浏览 |
磷酸锌对环氧涂层破损处金属的缓蚀作用
曹佳;邵亚薇;张涛;孟国哲
哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
ROLES OF ZINC PHOSPHATE ON THE CORROSION OF THE SCRATCHED EPOXY COATING
CAO Jia; SHAO Yawei; ZHANG Tao; MENG Guozhe
Materials Science & Chemistry Engineering School; Harbin Engineering University;Harbin 150001
全文: PDF(1533 KB)  
摘要: 

用电化学阻抗谱(EIS)、电化学噪声(EN)及扫描电化学显微镜(SECM)等方法对带有划痕的环氧清漆涂层和环氧/磷酸锌涂层进行了测试,研究了磷酸锌对涂层破损处金属的缓蚀作用。EIS和EN的结果表明:加入磷酸锌后涂层下金属基体的腐蚀受到抑制;SECM结果直观地证明了磷酸锌对涂层划痕有修复作用。用电化学噪声的散粒噪声理论并结合随机分析方法研究了磷酸锌的作用机制,结果发现加入磷酸锌不但大大减缓了腐蚀的孕育速度,还降低了腐蚀的生长概率,因而能够减缓金属基体腐蚀的进行。

关键词 环氧涂层磷酸锌散粒噪声扫描电化学显微镜随机分析    
Abstract

The roles of zinc phosphate on the corrosion of the scratched coating were studied by electrochemical impedance spectroscopy(EIS), electrochemical noise measurements(EN) and scanning electrochemical microscopy(SECM). The experimental results of EN and EIS revealed that zinc phosphate had inhibition effect on the corrosion of the scratched epoxy coatings. The SECM results implied that the scratched surface of zinc phosphate coating was healed by an insulated film indeed. The mechanism of zinc phosphate on the corrosion of the scratched coating was analyzed based on the combined stochastic theory and shot noise theory using the Weibull distribution and Gumbel distribution function. It showed that the corrosion generation rate and the corrosion growth probability of the metal under the coatings were decreased with the addition of zinc phosphate.

Key wordsepoxy coating    zinc phosphate    shot noise    SECM    stochastic theory
收稿日期: 2008-11-05     
ZTFLH: 

TG174.41

 
基金资助:

国家自然科学基金项目(50535050,50405042)资助

通讯作者: 邵亚薇     E-mail: shaoyawei@hrbeu.edu.cn.
Corresponding author: SHAO Yawei     E-mail: shaoyawei@hrbeu.edu.cn.
作者简介: 曹佳,女,1984生,硕士生,研究方向为材料腐蚀与防护

引用本文:

曹佳 邵亚薇 张涛 孟国哲. 磷酸锌对环氧涂层破损处金属的缓蚀作用[J]. 中国腐蚀与防护学报, 2009, 29(6): 437-441.
CAO Jia, SHAO Ya-Wei, ZHANG Shou. ROLES OF ZINC PHOSPHATE ON THE CORROSION OF THE SCRATCHED EPOXY COATING. J Chin Soc Corr Pro, 2009, 29(6): 437-441.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I6/437

[1] Li W M, Song Y S, Deng S Z. The Corrosion of Coating Metal [M].Changsha: National University of Defense Technology Press, 2003: 86
    (黎完模, 宋玉苏, 邓淑珍. 涂装金属的腐蚀 [M]. 长沙: 国防科技大学出版社, 2003: 86)
[2] Flis J, Dawson. J L, Gill J. Impedance and electrochemical noise measurements on iron and iron-carbon alloys in hot caustic soda [J].Corros. Sci., 1991, 8: 877-892
[3] Uruchurtu J. Electrochemical investigations of the activation mechanism of aluminum [J].Corrosion, 1991, 47(6): 472
[4] Smulko J, Darowicki K. Nonlinearity of electrochemical noise caused by pitting corrosion [J]. J.Electroanal. Chem., 2003, 545: 59
[5] Monticelli C, Brunoro G,Frignani A. Evaluation of corrosion inhibitors by electrochemical noise analysis [J]. J. Electrochem. Soc., 1992, 139: 706
[6] Cao C N. Studies on the spectral analyses in the electrochemistry of corrosion [J]. Corros. Sci. Prot. Techno1., 1993, 5(1): l-9
    (曹楚南. 腐蚀电化学中的频谱分析研究 [J]. 腐蚀科学与防护技术, 1993, 5(1): 1-9)
[7] Bertocci U, Frydman J, Gabrielli C. Analysis of electrochemical noise by power spectral density applied to corrosion studies [J]. J.Electrochem. Soc., l998, l45(8): 2780-2785
[8] Aballe A, Bethencourt M, Botana F J, et al. Wavelet transform-based analysis for electrochemical noise [J]. Electrochem. Commun., 1999, 1(7): 266
[9] Chen J, Bogaerts W. The physical meaning of noise resistance [J].Corros. Sci., 1995, 37: 1839-1842
[10] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical paramenters of the estimation of corrosion mechanisms [J]. Corros. Sci., 2005, 47: 3280-3299
[11] Cottis R A. Interpretation of electrochemical noise data [J].Corrosion, 2001, 57: 265-285
[12] Al-Mazeedi H A A, Cottis R A. A practical evaluation of electrochemical noise parameters as indicators of corrosion type [J]. Electrochim.Acta., 2004, 49: 2787-2793
[13] Bard A J, Fan F-RF, Kwak J, et al. Scanning electrochemical microscopy. introduction and principles [J].Anal. Chem., 1989, 61: 132-138
[14] Bard A J, Fan F-RF, Mirkin M V. Electroanalytical Chemistry [M]. New York: Marcel Dekker, 1993:243-373
[15] Liu J H, Shao Y W, Meng G Z, et al. Analysis of corrosion process of thin organic coatings using EIS and EN methods [J]. Paint Coatings Ind., 2008, 38(6): 62-66
     (刘继慧, 邵亚薇, 孟国哲等. 利用电化学阻抗谱和电化学噪声分析薄有机涂层的 腐蚀过程 [J]. 涂料工业, 2008, 38(6): 62-66)
[16] Na K H, Pyun S I. Effects of sulphate, nitrate and phosphate on pit initiation of pure aluminum in HCl-based solution [J]. Corros. Sci., 2007, 49: 2663-2675
[17] Lewis E E. Introduction to Reliability Engineering [M]. New York:John Wiley and Sons, 1987
[18] Pyun S, Lee E, Han G. Localized corrosion of sputtered Al-1wt.%Si-0.5wt.%Cu alloy thin film [J]. Thin Solid Films, 1994,239: 74-78
[19] Park J, Pyun S. Stochastic approach to the pit growth kinetics of Inconel alloy 600 in Cl- ion-containing thiosulphate solution at temperatures 25-150 ℃ by analysis of the potentiostatic current transients [J]. Corros. Sci., 2004, 46: 285-296
[20] Gumbel E J. Statistical Theory of Extreme Values and Some Practical Applications [S]. US Natl. Bur. Stand., 1954

[1] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[2] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[3] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[4] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[5] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[6] 曹发和, 柳晓燕, 朱泽洁, 叶珍妮, 刘盼, 张鉴清. 扫描电化学显微镜的数值模拟和距离控制及其应用[J]. 中国腐蚀与防护学报, 2017, 37(5): 395-401.
[7] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[8] 张山,周丽娜,简璐,王煦. 聚苯胺/TiO2/环氧涂层的制备及耐蚀性研究[J]. 中国腐蚀与防护学报, 2016, 36(1): 59-66.
[9] 孙伟, 尹桂来, 刘福春, 唐囡, 韩恩厚, 万军彪, 柯伟, 邓静伟. 装载缓蚀剂的纳米SiO2对环氧涂层耐腐蚀性的影响[J]. 中国腐蚀与防护学报, 2015, 35(5): 447-454.
[10] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[11] 元辛, 岳珠峰, 温世峰, 李磊. 铝合金表面有机硅环氧涂层的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 375-381.
[12] 陈阵,余强,廖登辉,郭忠诚,武剑,罗智珊. 酸性介质中HR-2不锈钢表面活性的SECM三维图像表征研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 54-60.
[13] 刘樱,刘莉,李瑛,王福会. 高静水压力对水在环氧涂层中传输行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 203-209.
[14] 石秋梅,邵亚薇,张涛,孟国哲,陈琪昊. 磷酸锌对环氧涂层划痕的保护尺寸研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394.
[15] 唐俊文,邵亚薇,张涛,孟国哲,王福会. 循环压力对环氧涂层在模拟深海环境中失效行为的影响[J]. 中国腐蚀与防护学报, 2011, 31(4): 275-281.