Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (1): 19-23    
  研究报告 本期目录 | 过刊浏览 |
API X56钢在含H2S的海洋大气中的应力腐蚀开裂
郑传波1;2;黄彦良1;霍春勇3;于青1;2;朱永艳1;2
1.中国科学院海洋研究所 青岛 266071
2.中国科学院研究生院 北京 100039
3.中国石油天然气总公司石油管材研究所 西安 710065
STRESS CORROSION CRACKING OF X56 GRADE PIPELINE STEEL IN ATMOSPHERIC ENVIRONMENT CONTAINING H2S
ZHENG Chuanbo1;2;HUANGYanliang1;HUO Chunyong3;YU Qing1;2;ZHU Yongyan1;2
1.Institute of Oceanology;Chinese Academy of Sciences; Qingdao 266071
2.Graduate University of Chinese Academy of Sciences; Beijing 100039
3.Tubular Goods Research Center of China National Petroleum Corporation; Xi'an 710065
全文: PDF(1106 KB)  
摘要: 

采用慢应变速率拉伸及Devnathan-Stachurski双电解池技术研究了 X56钢在模拟海洋大气环境中形变及H2S含量对其应力腐蚀开裂及氢渗透行为的影响。结果表明,在H2S含量相同时,拉伸速率越小,试样断裂延伸率越小。在相同拉伸速率下,随着H2S含量增大,试样断裂延伸率减小,扫描电镜微观分析(SEM)表明,其断裂特征由塑性断裂逐渐转变为脆性断裂。电化学渗氢实验表明,随着H2S含量的增大,第一干湿循环氢渗透电流并不单调增大,H2S对氢渗透电流的作用由H2S的表面覆盖度和腐蚀产物膜来共同控制。从多个干湿循环来看,H2S可增大氢渗透电流,材料的渗氢加剧,脆性增大。

关键词 H2S应力腐蚀开裂敏感性氢脆大气腐蚀    
Abstract

Susceptibility to SCC of X56 grade pipeline steel was investigated by slow strain rate test (SSRT) and Devnathan-Stachurski double electrolytic cell in atmospheric environment containing H2S. The results showed that the fracture strain decreased while the strain rate decreased in the same H2S concentration environment. And the fracture strain decreased with increasing the concentration of H2S at the same strain rate 6.67x10-7 s-1. The SEM fractographs of the specimens also showed that the susceptibility to stress corrosion cracking (SCC) increased. The hydrogen permeation test showed that hydrogen permeation current did not increase with increasing the concentration of H2S in the first wet-dry cycle because of the formation of product film. The longer the experiment time, the more the hydrogen atom permeated through the specimen. This trend partially attribute to the surface coverage ratio (θ) of H2S and the corrosion product film.

Key wordshydrogen sulfide    stress corrosion cracking    hydrogen embrittlement    atmospheric environment
收稿日期: 2007-04-16     
ZTFLH: 

P734

 
基金资助:

国家自然科学基金项目(40576049),中国科学院知识创新工程重要方向项目(KZCX2-YW-210)

通讯作者: 黄彦良     E-mail: hyl@ms.qdio.ac.cn
Corresponding author: HUANGYanliang     E-mail: hyl@ms.qdio.ac.cn

引用本文:

郑传波 黄彦良 霍春勇 于青 朱永艳. API X56钢在含H2S的海洋大气中的应力腐蚀开裂[J]. 中国腐蚀与防护学报, 2009, 29(1): 19-23.
ZHENG Zhuan-Bei, HUANG Pan-Liang, YU Jing, ZHU Yong-Yan. STRESS CORROSION CRACKING OF X56 GRADE PIPELINE STEEL IN ATMOSPHERIC ENVIRONMENT CONTAINING H2S. J Chin Soc Corr Pro, 2009, 29(1): 19-23.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I1/19

[1] Van Gelder K,Erlings J G,Damen J W M,et al. The stress corrosion cracking of duplex stainless steel in H2S/CO2/Cl- environments [J]. Corros. Sci.,1987, 27(10-11):1271-1279
[2] Barteri M,Mancia F,Tamba A,et al. Engineering diagrams and sulphide stress corrosion cracking of duplex stainless steels in deep sour well environment [J]. Corros. Sci.,1987,27(10-11):1239-1250
[3] Huang Y L,Zhu Y Y. Hydrogen ion reduction in the process of iron rusting [J]. Corros. Sci.,2005,47(6):1545-1554
[4] Devnathan M A V,Stachurski Z. A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths[J].J. Electrochem,Soc.,1963,110(8): 886-894
[5] GB17378. 4--1998,Seawater analysis--Part 4 of criterion of marine monitoring[S].
(GB17378. 4--1998,海洋监测规范第4部分~海水分析[S].)
[6] MasatoKobayashi,Atsushi Nishikata,Tooru Tsuru. Hydrogen embrittlement of reinforced steels in high alkaline chloride environments[A]. 45th Forum on Engineering Science and Technology, Chinese Academy of Engineering & 3rd international symposium on marine corrosion and control[C]. Qingdao,2006,93-97
[7] Tsai S Y,Shih H C. A statistical failure distribution and lifetime assessment of the HSLA steel plates in H2S containing environments[J]. Corros. Sci.,1996,38(5): 705-719
[8] Qiao L J,Wang Y B,Chu W Y. Mechanism of Stress Corrosion[M]. Beijing:Science Press,1993:83
(乔利杰,王燕斌,褚武扬. 应力腐蚀机理[M]. 北京:科学出版社,1993:83)
[9] Li M Q,Cai Z C,He X Y. Electrochemical study of 16Mn steel under H2S thin electrolyte film[J]. Mater. Prot., 2006,39(1):1-5
(李明齐,蔡铎昌,何晓英. H2S薄层液膜下16Mn钢腐蚀的电化学研究[J]. 材料保护,2006,39(1):1-5)
[10] Cao C N. Corrosion Electrochemistry[M]. Beijing: Chemistry Industry Press,1995,14
(曹楚南.腐蚀电化学[M].北京:化学工业出版社,1995,14)
[11] Li G M,Liu L W,Zheng J T. Corrosion behavior of carbon steel in high pressure dioxide saturated NaCl solutions containing hydrogen sulfide[J]. J. Chin. Soc. Corros. Prot.,2000,20(4):204-209
(李国敏,刘烈伟,郑家棠.碳钢在硫化氢及高压二氧化碳饱 和的NaC1溶液中的腐蚀行为[J].中国腐蚀与防护学报, 2000,20(4):204-209)
[12] Ma H Y,Cheng X L,Li G Q,et al. The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros.Sci.,2000,42(10):1669-1683

 

[1] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[2] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[3] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[5] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[6] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[7] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[8] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[9] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[10] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[11] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[12] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[13] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[14] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[15] 张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.