Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (5): 265-270     
  论文 本期目录 | 过刊浏览 |
硫酸盐还原菌生物膜对HSn70-1AB铜合金电极界面的影响
李进;许兆义;杜一立;苑维双;牟伟腾
北京交通大学市政环境工程系
The effect of the sulfate reducing bacteria biofilm on phase boundary between HSn70-1AB copper alloy and solution
北京交通大学市政环境工程系
全文: PDF(1540 KB)  
摘要: 测试了硫酸盐还原菌(sulfate reducing bacteria, SRB)的生长规律,浸泡初期(前3 d)SRB处于对数增长期,浸泡后期(4 d后)SRB进入稳定生长期。利用AFM技术和EIS电化学方法研究了SRB生物膜对HSn70-1AB铜合金电极界面的影响。AFM分析表明,浸泡后期合金表面生物膜粗糙度较前期有所下降。EIS结果表明,浸泡前3 d,合金表面氧化膜层较为稳定,氧化膜层电容值变化不明显。浸泡7 d后,合金表面氧化膜遭受局部腐蚀,开始出现微孔,粗糙度增加,氧化膜层电容值增大。
关键词 硫酸盐还原菌生物膜AFM显微技术交流阻抗    
Abstract:Growth characteristics of Sulfate Reducing Bacteria (SRB) was tested. The SRB was in logarithmic-phase growth during the first three days and turn into stationary-phase growth since then. Atomic Force Microscopy (AFM) and Electrochemical Impedance Spectroscopy, respectively (EIS) have been used to investigate the effect of biofilm on phase boundary of HSn70-1 AB copper alloy and solution. The study using AFM showed that SRB cells adhered to the surface of copper alloy and the biofilm formed during three days immergence were observed. Roughness of three-day-old biofilm formed on the alloys was 44.7nm, while roughness of the biofilm decreased to 25.8nm after 14 days immergence. The simulative date of EIS spectrum revealed that transfer resistance (Re) of the electric double layer on the alloy surface increases with the immergence prolonged. Furthermore, capacitance value (Yp) of oxidation film on the alloy surface changed seriously, which indicated the structure of oxidation film was impacted.
Key wordsSulfate Reducing Bacteria (SRB)    biofilm    Atomic Force Microscopy (AFM)    Electrochemical Impedance S
收稿日期: 2007-01-04     
ZTFLH:  TG174  
通讯作者: 李进     E-mail: jinli@center.njtu.edu.cn

引用本文:

李进; 许兆义; 杜一立; 苑维双; 牟伟腾 . 硫酸盐还原菌生物膜对HSn70-1AB铜合金电极界面的影响[J]. 中国腐蚀与防护学报, 2008, 28(5): 265-270 .

链接本文:

https://www.jcscp.org/CN/Y2008/V28/I5/265

[1]Videla H A.Biological corrosion and biofilm effects on metal biode-terioration[J].Biodeter.Res,1989,2:39-50
[2]Lee W,Characklis W G.Corrosion of mild steel under anaerobicbiofilm[J].Corrosion,1993,49(3):186-199
[3]Wagner D,Chamberlain A H L.Microbiologically influenced cop-per corrosion in potable water with emphasis on practical rele-vance[J].Biodegrad.,1997,8:177-187
[4]Liu J,Xu L M,Zheng J S.A study on corrosion behavior underthe biofilm of sulfate-reducing bacteria on Cu-Zn alloy[J].J.Chin.Soc.Corros.Prot.,2001,21(6):345-351(刘靖,许立铭,郑家.硫酸盐还原菌生物膜下Cu-Zn合金的腐蚀研究[J].中国腐蚀与防护学报,2001,21(6):345-351)
[5]Beer D,Stoodley P,Roe F,et al.Effects of biofilm structures onoxygen distribution and mass transport[J].Biotechnol.Bioeng.,1994,43:1131-1138
[6]Lee W,Beer D.Oxygen and pH microprofiles above corrosion mildsteel covered with a biofilm[J].Biofoul.,1995,8:273-280
[7]Little B J,Wagner P A,Ray R I,et al.Biofilms:an ESEM eval-uation of artefacts introduced during SEM preparation[J].J.Ind.Microbiol.,1991,8:213-222
[8]Sutton N A,Hughes N,Handley P.A comparison of conventionalSEM techniques,low temperature SEM and the electroscan wetscanning electron microscope to study the structure of a biofilm ofStreptococcus crista CR3[J].J.Appl.Bacteriol.,1994,76(5):448-454
[9]Walker J T,Keevil C W.Study of microbial biofilms using lightmicroscopy techniques[J].Int.Biodeterior.Biodegrad.,1994,34:223-236
[10]Xu L C,Chan K Y,Fang H H P.Application of atomic forcemicroscopy in the study of microbiologically influenced corrosion[J].Mater.Charact.,2002,48:195-203
[11]Steele A,Goddard D T,Beech I B.Atomic force microscopystudy of the biodeterioration of stainless steel in the presence ofbacterial biofilms[J].Int.Biodeterior.Biodegrad.,1994,34(1):35-46
[12]Franklin M J,Nivens D E,Guckert J B,et al.Effect of electro-chemical impedance spectroscopy on microbial biofilm cell num-bers,viability and activity[J].Corrosion,1991,47(7):519-522
[13]Mu J,Zhang Z M.A new method of isolation and purification ofanaerobic bacteria:culture dish sandwich anaerobic method[J].J.Shanxi Univ.(Nat.Sci.Ed.),1998,21(4):363-367(穆军,张肇铭.一种分离纯化厌氧细菌的新方法--平皿夹层厌氧法[J].山西大学学报,1998,21(4):363-367)
[14]Postgate J R.The Sulfate-reducing Bacteria[M].2nd ed.,Cam-bridge:Cambridge University Press,1984,32
[15]Beech I B,Smith J R,Steele A A,et al.The use of atomic forcemicroscopy for studying interactions of bacterial biofilms with sur-faces[J].Colloids Surf.,2002,23(2-3):B231-247
[16]Li J,Xu Z Y,Du Y L,et al.A comparative study on sulfatereducing bacteria influenced corrosion of copper alloys[J].J.Chin.Soc.Corros.Prot.,2007,27(6):342-347(李进,许兆义,杜一立等.硫酸盐还原菌对铜合金生物腐蚀的比较研究[J].中国腐蚀与防护学报,2007,27(6):342-347)
[17]Beech I B,Gaylarde C C,Smith J J,et al.Extracellularpolysaccharides from Desulfovibrio desulfuricans and Pseudomonasfluorescens in the presence of mild and stainless steel[J].Appl.Microbiol.Biotechnol.,1991,35(1):65-71
[18]Hu M P.Corrosion Electric Chemistry[M].Beijing:China Metal-lurgical Industry Press,1991:51-104(胡茂圃.腐蚀电化学[M].北京:冶金工业出版社,1991:51-104
[19]Shalaby H M,Hasan A A,Al-Sabti F.Effect of inorganic sulfideand bacterial micro fouling on corrosion of 70/30 copper/nickel al-loy in seawater[J].Corrosion98.San Diego,CA;USA;22-27Mar.1998:295/1-295/16
[20]Cao C N.Corrosion Electrochemistry[M].Beijing:Chemical In-dustry Press,2004(曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004)
[21]Lee A K,Newman D K,Microbial iron respiration:impacts oncorrosion processes[J].Appl.Mocrobiol.Biotechnol.2003,62(2-3):134-139
[22]Ismail K M,Jayaraman A,Wood T K,et al.The influence ofbacteria on the passive film stability of 304 stainless steel[J].Electrochim.Acta,1999,44(26):4685-4692
[23]Sheng X X,Ting Y P,Simo O P.The influence of sulphate-re-ducing bacteria biofilm on the corrosion of stainless steel AISI 316[J].Corros.Sci.,2007,49(5):2159-2176
[24]Keresate Z,Telegdi J,Beczner J,et al.The influence of bio-cides on the microbiologically influenced corrosion of mild steeland brass[J].Electrochim.Acta,1998,43(1-2):77-85
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[4] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[5] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[6] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[7] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[8] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[9] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[10] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[11] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[12] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[13] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[14] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[15] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.