Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (3): 135-140     
  研究报告 本期目录 | 过刊浏览 |
NaCl溶液中包覆铝层的LY12CZ铝合金阳极极化过程EIS特征
张正; 宋诗哲; 陶蕾
天津大学材料学院
EIS CHARACTERISTIC OF LY12CZ ALUMINIUM ALLOY WITH ALUMINIUM OVERLAYER UNDER ANODIC POLARIZATION IN 0.1mol/L NaCl SOLUTION
天津大学材料学院
全文: PDF(1257 KB)  
摘要: 用电化学阻抗谱(EIS)研究了LY12CZ铝合金及包覆铝层后LY12CZ铝合金在0.1 mol/L NaCl溶液中的腐蚀破坏过程,根据两种条件下铝合金在不同极化电位下的EIS特征,建立与之相应的电化学等效电路模型,并分析了腐蚀机理。研究表明,阳极极化过程中两种条件下铝合金的EIS主要特征类似,Nyquist图均呈现双容抗弧。在点蚀发展过程中,包覆铝层的LY12CZ 铝合金的Nyquist图高,低频容抗弧半径增大,主要是因为包铝层与LY12CZ铝合金基体之间残存的氧化膜减缓了腐蚀的发展。
关键词 电化学阻抗谱LY12CZ铝合金包铝层    
Abstract:The corrosion processes of LY12CZ aluminium alloy and LY12CZ with aluminium overlayer LB2 were studied by electrochemical impedance spectroscope (EIS) under anodic potential steps in 0.1 mol/L NaCl solution. According to the characteristics of EIS, the electrochemical equivalent circuit was established. The corrosion mechanisms of the two materials were further analyzed. The results show that the main EIS characteristics of the two materials are similar during the corrosion processes. Their Nyquist plots both consist of two capacitive arcs. During the pitting propagation of LY12CZ with aluminium overlayer, the radius of capacitive arcs in Nyquist plot increased temporarily, because the oxide films between in LY12CZ and aluminium overlayer inhibited the pitting propagation.
Key wordsEIS    aluminium alloy LY12CZ    aluminium overlayer LB2
收稿日期: 2006-11-06     
通讯作者: 张正      E-mail: eisanden@hotmail.com

引用本文:

张正; 宋诗哲; 陶蕾 . NaCl溶液中包覆铝层的LY12CZ铝合金阳极极化过程EIS特征[J]. 中国腐蚀与防护学报, 2008, 28(3): 135-140 .

链接本文:

https://www.jcscp.org/CN/Y2008/V28/I3/135

[1]Zhang Z,Song S Z,Mo S F.EIS characteristic of LY12CZ alloy with different exfoliation corrosion grades in 0.1 mol/L NaCl solu-tion[J].Acta Metall.Sin.,2004,40(7):754-758(张正,宋诗哲,墨淑芬.0.1 mol/L NaCl溶液中不同剥蚀程度LY12CZ合金的EIS特征[J].金属学报,2004,40(7):754-758)
[2]Campestrini P,Van Westing E P M,Van Rooijen H W,et al.Relation between microstructural aspects of AA2024 and its corro-sion behaviour investigated using AFM scanning potential tech-nique[J].Corros.Sci.,2000,42(11):1853-1861
[3]Li J F,Zheng Z Q,Zhang Z,et al.Electrochemical impedance spectroscopy of Al alloys during exfoliation corrosion[J].J.Chin.Soc.Corros.Prot.,2005,25(1):48-52(李劲风,郑子樵,张昭等.铝合金剥蚀过程的电化学阻抗谱分析[J].中国腐蚀与防护学报,2005,25(1):48-52)
[4]Cui F,Presuel-Moreno F J,Kelly R G.Experimental and compu-tational evaluation of the protection provided by an aluminumcladding to AA2024-T3 exposed at a seacoast environment[J].Corrosion,2006,62(3):251-263
[5]Duquesnay D L,Underhill P R,Britt H J.Fatigue failure of ad-hesively patched 2024-T3 and 7075-T6 clad and bare aluminiumalloys[J].Fatigue Fract.Eng.Mater Struct.,2005,28(4):381-389
[6]Petroyiannis P V,Pantelakis Sp G,Haidemenopoulos G N.Pro-tective role of local Al cladding against corrosion damage and hy-drogen embrittlement of 2024 aluminum alloy specimens[J].The-or.Appl.Fract.Mech.,2005,44(1):70-81
[7]Zhao Y H,Lin L Y,Cui D W,et al.Protection of Al clad on 7B04 aluminum alloy in salt water[J].J.Chin.Soc.Corros.Prot.,2006,26(5):286-291(赵月红,林乐耘,崔大为等.盐湖水中包铝对超硬铝合金基材的保护作用[J].中国腐蚀与防护学报,2006,26(5):286-291)
[8]Campestrini P,Van Westing E P M,De Wit J H W.Influence of surface preparation on performance of chromate conversion coat-ings on Al clad 2024 aluminium alloy-Part II:EIS investigation[J].Electrochim.Acta,2001,46(17):2631-2647
[9]Shi Y Y,Zhang Z,Su J X,et al.EIS study on 2024-T3 alu-minum alloy corrosion in simulated acid rain under cyclic wet-dryconditions[J].Mater.Corros.,2005,56(10):701-706
[10]Zheludkevich M L,Yasakau K A,Poznyak S K,et al.Triazole and thiazole derivatives as corrosion inhibitors for AA2024 alu-minium alloy[J].Corros.Sci.,2005,47(12):3368-3383
[11]Moutarlier V,Gigandet M P,Normand B,et al.EIS character-isation of anodic films formed on 2024 aluminium alloy in sul-phuric acid containing molybdate or permanganate species[J].Corros.Sci.,2005,47(4):937-951
[12]An B G,Zhang X Y,Song S Z,et al.A study of electrochemi-cal impedance spectrum for corrosion behavior of LY12 aluminumalloy in simulated acid rain[J].J.Chin.Soc.Corros.Prot.,2003,23(3):167-170(安百刚,张学元,宋诗哲等.LY12铝合金在模拟酸雨溶液中的阻抗谱研究[J].中国腐蚀与防护学报,2003,23(3):167-170)
[13]Lin G,Lin H G,Zhao Y T.Application Handbook of Alumini-um Alloys[M].Beijing:China Machine Press,2006(林钢,林慧国,赵玉涛.铝合金应用手册[M].北京:机械工业出版社,2006)
[14]Song S Z,Tang Z L.An electrochemical impedance analysis on aluminium in 3.5%NaCl solution[J].J.Chin.Soc.Corros.Prot.,1996,16(2):127-132(宋诗哲,唐子龙.工业纯铝在3.5%NaCl溶液中的电化学阻抗谱分析[J].中国腐蚀与防护学报,1996,16(2):127-132)
[15]Gan Z,Wang Y.Influence of microstructure on exfoliation cor-rosion of 2024 aluminium alloy[J].Corros.Sci.Prot.Technol.,1995,7(3):208-209(甘株,王云.微观结构对LY12铝合金剥蚀的影响[J].腐蚀科学与防护技术,1995,7(3):208-209)
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[3] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[4] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[5] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[6] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[7] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[8] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[9] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[10] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[12] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[13] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[14] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.