Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (3): 129-134     
  研究报告 本期目录 | 过刊浏览 |
单相和双相不锈钢纳米涂层的电化学腐蚀行为
叶威; 李瑛; 王福会
中科院金属研究所
Electrochemical corrosion behavior of nano-crystalline stainless steel coating with different phase composition
中科院金属研究所
全文: PDF(1415 KB)  
摘要: 用磁控溅射技术在玻璃基体上制备由两种相组成(单相和双相)的不锈钢纳米涂层,利用动电位极化、交流阻抗技术及扫描电子显微镜研究两种不锈钢纳米涂层在0.25 mol/L Na2SO4 + 0.05 mol/L H2SO4 和 0.5 mol/L NaCl + 0.05 mol/L H2SO4溶液中的电化学腐蚀行为,观察相组成对纳米不锈钢涂层耐蚀性能的影响。结果表明,与不锈钢单相涂层相比,不锈钢双相纳米涂层具有较差的抗局部腐蚀能力,其钝化膜的载流子密度远远大于不锈钢单相钝化膜的载流子密度,使得钝化膜的离子传输能力大大增强,从而降低了钝化膜的稳定性。
关键词 纳米涂层相组成局部腐蚀钝化膜    
Abstract:The single-phase (α) and duplex-phase (α+γ) nano-crystalline coatings have been fabricated on glass substrate by DC magnetron sputtering. The electrochemical corrosion behavior of the two NC coatings in solutions of 0.25M Na2SO4 + 0.05M H2SO4 and 0.5M NaCl + 0.05M H2SO4 was investigated by using potentiodynamic polarization, EIS and SEM. The results showed that there was a large difference in the corrosion behavior between the single-phase (α) and the duplex-phase (α+γ) nano-crystalline coatings. The duplex-phased coating is shown to have exhibited a lower localized corrosion resistance and possessed a less stable passive film than the single-phase coating. A similar two-layer semiconductor passive film was formed on both coatings; however, a great increase in carrier densities could be responsible for the low stability of the passive film on the duplex-phase coating.
Key words
收稿日期: 2006-09-26     
通讯作者: 叶威     E-mail: weiye@imr.ac.cn

引用本文:

叶威; 李瑛; 王福会 . 单相和双相不锈钢纳米涂层的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(3): 129-134 .

链接本文:

https://www.jcscp.org/CN/Y2008/V28/I3/129

[1]Inturi RB,Szklarska-Smialowska Z.Localized corrosion of nanocrys-talline 304 type stainless steel films[J].Corrosion,1992,48:398-403
[2]Ryan M P,Laycock N J,Issaacs H S,et al.Corrosion pits in thin films of stainless steel[J].J.Electrochem.Soc.,1999,146:91-97
[3]Wang X Y,Li DY.Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel[J].Electrochim.Acta,2002,47:3939-3947
[4]Fujimoto S,Hayashida H,Shibata T.Extremely high corrosion re-sistance of thin film stainless steels deposited by ion beam sputter-ing[J].Mater.Sci.Eng.,1999,267:314-318
[5]Liu D,Wang F,Cao C.The pitting corrosion resistance of micro-crystalline coatings of sputtered 321 stainless steel[J].Corrosion,1990,46:975-977
[6]Ye W,Li Y,Wang F.Effects of nanocrystallization on the corro-sion behavior of 309 stainless steel[J].Electrochim.Acta,2006,51:4426-4432
[7]Ningshen S,Kamachi Mudali U,Amarendra G,et al.Hydrogen effects on the passive film formation and pitting susceptibility ofnitrogen containing type 316L stainless steels[J].Corros.Sci.,2006,48:1106-1112
[8]Park C J,Kwon H S,Lohrengel M M.Micro-electrochemical po-larization study on 25%Cr duplex stainless steel[J].Mater.Sci.Eng.,2004,A372:180-185
[9]Lo I H,Fu Y,Lin C J,et al.Effect of electrolyte composition on the active-to-passive transition behavior of 2205 duplex stainlesssteel in H2SO4/HCl solutions[J].Corros.Sci.,2006,48:696-709
[10]Olsson C O A.The influence of nitrogen and molybdenum on pas-sive films formed on the austenoferritic stainless steel 2205 stud-ied by AES and XPS[J].Corros.Sci.,1995,37:467-479
[11]Sato N.Toward a more fundamental understanding corrosion pro-cesses[J].Corrosion,1989,45:354-368
[12]Cheng Y F,Luo J L.A comparison of the pitting susceptibility and semiconducting properties of the passive films on carbon steelin chromate and bicarbonate solutions[J].Appl.Surf.Sci.,2000,167:113-121
[13]Hakiki N E,Boudin S,Rondot B.The electronic structure of passive films formed on stainless steels[J].Corros.Sci.,1995,37:1809-1822
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[4] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[5] 史伟宁,杨树峰,李京社. 不锈钢中诱发局部腐蚀的贫Cr区研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 281-290.
[6] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[8] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[9] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[10] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[11] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[12] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[13] 严寒, 赵晴, 杜楠, 胡彦卿, 王力强, 王帅星. 镀锌层三价铬钝化成膜过程及耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[14] 冯超, 彭碧草, 谢亿, 王军, 李明欢, 吴堂清, 尹付成. 0.1%NaHSO3盐雾条件下T91钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[15] 张彭辉, 逄昆, 丁康康, 孔祥峰, 彭欣. 扫描振动电极技术在腐蚀领域的应用进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.