Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (6): 329-333     
  研究报告 本期目录 | 过刊浏览 |
Cu/Sn63-Pb37 双金属结构在模拟湿热大气环境中的电化学腐蚀行为初探
邱萍;严川伟;严川伟
中国科学院金属研究所金属腐蚀与防护国家重点实验室
Electrochemical Corrosion Behaviors of the Galvanic Couple Cu/Sn63-Pb37 in simulated atmosphere
;Chuanwei Yan;
中国科学院金属研究所金属腐蚀与防护国家重点实验室
全文: PDF(301 KB)  
摘要: 针对电子装备中Cu/Sn63-Pb37偶对在模拟湿热大气环境中(40?C, 95%RH)的腐蚀特性,用薄液膜下原位零阻安培表腐蚀电化学测试技术结合SEM、FT-IR及XRD等表面分析手段,获得了电偶对的阳极电偶电流密度和电偶电位随时间的变化规律及腐蚀试样表面形貌和腐蚀产物组成的信息,阐述了Cu与Sn63-Pb37之间的电偶腐蚀特征和电化学机制,并揭示了金属表面腐蚀产物膜的形成进程及其对电偶腐蚀行为的影响。结果表明,Cu作为偶对中的阳极发生腐蚀而Sn63-Pb37作为阴极受到保护,腐蚀产物对Cu表面腐蚀进程具有阻滞作用,实验后期Sn63-Pb37表面的阴极活化作用加强,并破坏其表面的稳态氧化膜促使其发生腐蚀。
关键词 电偶腐蚀CuSn63-Pb37焊料    
Abstract:The Cu/Sn63-Pb37 galvanic couple appeared in most electronic devices. This paper was to investigate the corrosion characteristics and mechanisms of this couple, which was exposed in the typically simulated air condition at 40?C with 95%RH. The in-situ electrochemical information of the couple have been performed with related zero resistance ampere techniques under thin moisture film. According to the time dependent features of galvanic potential and anodic galvanic current density results, the Cu acted as anode and the Sn63-Pb37 acted as cathode during exposure. The gradual formed corrosion products, which were detected by FT-IR and XRD, restrained the anodic polarization behavior occurring on Cu surface. The hydrolyzed CO2 on the Sn63-Pb37 surface induced the breakdown of Pb oxides formed in air naturally, which was confirmed from the SEM surface morphologies. Despite the exact corrosion rates was not obtained from the galvanic current density data, the changing trend were valuable for estimating the atmospheric corrosion behavior of the Cu/Sn63-Pb37 couple.
Key wordsgalvanic corrosion    Cu    Sn63-Pb37 solder
收稿日期: 2006-04-27     
ZTFLH:  TG172.3  
通讯作者: 邱萍     E-mail: pqiu@imr.ac.cn

引用本文:

邱萍; 严川伟; 严川伟 . Cu/Sn63-Pb37 双金属结构在模拟湿热大气环境中的电化学腐蚀行为初探[J]. 中国腐蚀与防护学报, 2007, 27(6): 329-333 .
Chuanwei Yan. Electrochemical Corrosion Behaviors of the Galvanic Couple Cu/Sn63-Pb37 in simulated atmosphere. J Chin Soc Corr Pro, 2007, 27(6): 329-333 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2007/V27/I6/329

[1]Guttenplan J D,Hashimoto L N.Corrosion control for electricalcontacts in submarine based electronic equipment[J].Mater.Perform.,1978,18(12):49-55
[2]Sinclair J D.Corrosion of electronics[J].J.Electrochem.Soc.,1988,135(3):89C-95C
[3]Li Q.Corrosion of electronic materials[J].Electron.Compon.Mater.,1996,15(6):48-50(李青.电子材料的腐蚀[J].电子元件与材料,1996,15(6):48-50)
[4]Aastrup T,Wadsak M,Shreiner M.Experimental in situ studiesof copper exposed to humidified air[J].Corros.Sci.,2000,42:957-967
[5]Shin B L,Young R Y,Ja Y J.Electrochemical migration charac-teristics of eutectic Sn Pb solder alloy in printed circuit board[J].Thin Solid Films,2006,504:294-297
[6]Manning M I.Atmospheric corrosion issues today[J].Industrial Corros.,1989,7(8):5-9
[7]Mattsson E.Corrosion:an electrochemical problem[J].Chem.Technol.,1985,4:234-243
[8]Cao C N.Electrochemical Corrosion Theory[M].Beijing:Chemi-cal Industry Press,2004(曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004)
[9]Mansfeld F,Kenkel J V.Galvanic corrosion of Al alloysⅢ.Theeffect of area ratio[J].Corros.Sci.,1975,15:239-250
[10]Xu J L,Li M Z.Research on electrochemical monitoring of at-mospheric corrosion[J].J.Chin.Soc.Corros.Prot.,1987,7(1):60-65(徐俊丽,李牧铮.大气腐蚀电化学监测的研究[J].中国腐蚀与防护学报,1987,7(1):60-65)
[11]Zakipour S,Lygraf C.Evaluation of laboratory tests to simulateindoor corrosion of electrical contact materials[J].J.Electrochem.Soc.,1986,133(1):21-30
[12]Chen Z Y,Zakipour S,Persson D.The effects of sodium chlo-ride particles on the atmospheric corrosion of pure copper[J]Corrosion,2004,60(5):479-491
[13]Debiemme C,Ammeloo F,Sutter E M M.X-Ray photoemissioninvestigation of the corrosion film formed on a polished Cu-13Snalloy in aerated Na Cl solution[J].Appl.Surf.Sci.,2001,174:55-61
[14]Ryck I D,Biezen E V.Study of tin corrosion:the influence of al-loying elements[J].J.Cultural Heritage,2004,5:189-195
[15]Lu Y K.Thermodynamics of surface corrosion of solid pure lead、tin and their alloy[J].J.Univ.Sci.Technol.Beijing,1989,11(2):167-172(鲁永奎.固态铅、锡及其合金表面腐蚀热力学[J].北京科技大学学报,1989,11(2):167-172)
[1] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[2] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[3] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[4] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[5] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[6] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[7] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[8] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] 和佳乐, 王菊琳. 初始pH值和Cl-浓度对CuCl水解的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 397-402.
[10] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[11] 郭娜, 类延华, 刘涛, 常雪婷, 尹衍升. 植酸水溶液中聚吡咯涂层在Cu基体上的制备及其在腐蚀防护中的应用[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.
[12] 刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[13] 赵欣,胡裕龙,董赋,张晓东,王智峤. 湿态电绝缘对电偶腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[14] 肖斌,向军淮,张洪华. 四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 69-73.
[15] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.