Please wait a minute...
中国腐蚀与防护学报  2005, Vol. 25 Issue (6): 340-343     
  研究报告 本期目录 | 过刊浏览 |
新型铅钙板栅合金阳极腐蚀膜的性能研究
李党国;周根树;林冠发;郑茂盛
西安交通大学材料科学与工程学院
Properties of Anodic Scale of New Pb-Ca Grid Alloy
Dangguo Li;Genshu Zhou;Guanfa Lin;Maosheng Zheng
西安交通大学材料科学与工程学院
全文: PDF(129 KB)  
摘要: 利用阳极极化曲线和交流阻抗技术研究了新型板栅合金与传统合金的耐腐蚀性能。应用现代表面技术XPS和XRD研究了合金在0.9V下腐蚀6h所形成的阳极腐蚀膜的组成。结果表明,新型铅钙合金的耐腐蚀性能优于传统合金,其阳极腐蚀膜中导电性差的二价铅含量减少,四氧化铅的含量增大,其阳极腐蚀膜的电阻减少;新型铅钙合金可以明显改善铅酸电池的深循环性能,可以作为新一代免维护铅酸电池的板栅材料。
关键词 新型合金阳极膜XPS交流阻抗    
Abstract:The corrosion-resistance properties of new grid alloy and traditional alloy were studied using anodic polarization curve and A.C impendance. The anodic films of comparative alloys formed in sulfuric solution at anodic 0.9V potential corrosion for 6h were investigated by means of XPS and XRD methods. The result showed that new grid alloy has batter corrosion-resistance behavior than that of traditional alloy, the growth of Pb(Ⅱ) dioxide in new alloy surface layer was inhabited. By means of A.C impendance method, the resistor of the corrosion layers were decreased, it was found that the new alloy can encourage the development of PbO2 in the scale, and enhance the conductivity of the anocdic scale, then, the deep recycling properties of the battery was promoted greatly. The new alloy can serve as the candidate for the grid material in maintenance-free lead/acid battery.
Key wordsnew alloy    anodic films    XPS    A.C impendance
收稿日期: 2004-07-19     
ZTFLH:  TG174.3  
通讯作者: 李党国     E-mail: ldg1111@126.com

引用本文:

李党国; 周根树; 林冠发; 郑茂盛 . 新型铅钙板栅合金阳极腐蚀膜的性能研究[J]. 中国腐蚀与防护学报, 2005, 25(6): 340-343 .
Dangguo Li, Genshu Zhou, Guanfa Lin, Maosheng Zheng. Properties of Anodic Scale of New Pb-Ca Grid Alloy. J Chin Soc Corr Pro, 2005, 25(6): 340-343 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2005/V25/I6/340

[1]Zhao S Z,Lu Y D,Zhang Z H,et al.A new lead-calcium alloy formaintenance-free lead/acid batteries[J].J.Power Sources,1990,31:163-167
[2]David Prengman R.Challenges from corrosion-resistant grid alloysin lead/acid battery manufacturing[J].J.Power Sources,2001,95(1-2):224-233
[3]Culpin B,Hollenkamp A F,Rand D A.The effect of tin on the per-formance of positive plates in lead/acid batteries[J].J.PowerSources,1992,38:63-71
[4]Hollenkamp A F.When is capacity loss in lead/acid batteries“pre-mature”[J].J.Power Sources,1996,59(1-2):87-98
[5]Ball R J,Stevens R.Design aspects of the valve regulated lead/acidbattery[J].J.Power Sources,2003,113(2):228-232
[6]Takahashi K,Hoshihara N,Yasuda H,et al.Phenomena at the in-terface between positive active material and lead-calcium-tingrids[J].J.Power Sources,1990,30:23-31
[7]Slavkov D,Haran B S,Popov B N,et al.Effect of Sn and Ca dopingon the corrosion of Pb anodes in lead acid batteries[J].J.PowerSources,2002,112(1):199-208
[8]Miraglio R,Albert L,Ghachcham A E,et al.Passivation and corro-sion phenomena on lead-calcium-tin alloys of lead/acid batterypositive electrodes[J].J.Power Sources,1995,53(1):53-61
[9]Bui N,Mattesco P,Simon P.In situ redox conductivity XPS andimpedance spectroscopy studies of passive layers formed on lead-tin alloys[J].J.Power Sources,1995,53(3):163-167
[10]Liu H T,Yang J,Liang H H,et al.Effect of cerium on the anodiccorrosion of Pb-Ca-Sn alloy in sulfuric acid solution[J].J.Pow-er Sources,2001,93(1-2):230-233
[11]Li S R.Lead and Lead Alloys[M].Changsha:Middle South Indus-try University Press,1992(李松瑞.铅及铅合金[M].长沙:中南工业大学出版社,1992)
[12]Arifuku F,Yoneyama H,Tamura H.Oxidation states of lead in an-odic oxide films formed in sulphuric acid solutions containing anti-mony(Ⅲ)species[J].J.Applied Electrochemistry,1981,11:357-360
[13]Mao X X,Tang Z,Hu X G,et al.Study on the structure of film andthe performance of the Pb-Ca-Sn-Ce alloy[J].J.Battery Bi-monthly,2003,33(6):345-347
[14]Wei J,Zhao L,Sun F L,et al.Lead-acid battery grid alloy addi-tive containing cerium and yttrium[J].Chin.J.Nonferr.Metal.,2003,13(2):497-501(魏杰,赵力,孙芬莉等.含铈和钇的铅酸蓄电池板栅合金添加剂[J].中国有色金属学报,2003,13(2):497-501)
[15]Cao C N.On the faradaic admittance at mixed potential[J].J.Chin.Soc.Corros.Prot.,1993,13(2):91-100(曹楚南.混合电位下的感应电流导纳[J].中国腐蚀与防护学报,1993,13(2):91-100)
[1] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[3] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[4] 刘东,向红亮,刘春育. 含Ag抗菌双相不锈钢表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[5] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[6] 郝永胜,Luqman Abdullahi SANI,宋立新,徐国宝,葛铁军,方庆红. 中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[7] 吕文静,张颖君,师超,邵亚薇,王艳秋,孟国哲. 水溶性掺杂聚苯胺的制备及其性能研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 519-524.
[8] 王力伟, 李晓刚, 杜翠薇, 曾笑笑. 微区电化学测量技术进展及在腐蚀领域的应用[J]. 中国腐蚀与防护学报, 2010, 30(6): 498-503.
[9] 崔继红, 蔡建平,贾成厂. 盐雾环境下高强度铝合金的点蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(3): 197-202.
[10] 黄峰;曲炎淼;邓照军;刘静;郑超超;李晓刚. 不同组织X80钢在高pH土壤模拟溶液中的点蚀电化学行为[J]. 中国腐蚀与防护学报, 2010, 30(1): 29-34.
[11] 李松梅 王彦卿 刘建华 梁 馨. 氧化亚铁硫杆菌和氧化硫硫杆菌的协同作用对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 182-186.
[12] 乔建仙 罗红群 李明 李念兵. 尿酸自组装膜对镍缓蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(2): 145-148.
[13] 李进; 许兆义; 杜一立; 苑维双; 牟伟腾 . 硫酸盐还原菌生物膜对HSn70-1AB铜合金电极界面的影响[J]. 中国腐蚀与防护学报, 2008, 28(5): 265-270 .
[14] 李红; 张波; 王俭秋; 韩恩厚; 柯伟 . 合金元素Sb和Mn对Zn腐蚀的影响[J]. 中国腐蚀与防护学报, 2008, 28(5): 257-264 .
[15] 张大全; 冯晶晶; 高立新 . Cu表面氨基酸混合组装体系的缓蚀作用[J]. 中国腐蚀与防护学报, 2008, 28(4): 235-239 .