Please wait a minute...
中国腐蚀与防护学报  2004, Vol. 24 Issue (3): 163-167     
  研究报告 本期目录 | 过刊浏览 |
X70管线钢在模拟土壤介质中裂纹扩展量化模型
李明星
西安石油学院
CRACK PROPAGATION QUANTITATIVE MODELS OF X70 PIPELINE STEEL IN THE SYNTHETIC SOIL SOLUTION
Mingxing Li
西安石油学院
全文: PDF(164 KB)  
摘要: 试验研究了X70管线钢在模拟土壤介质中,循环载荷下的裂纹扩展特性和宏观规律.结果表明,裂纹扩展主要受裂尖应力强度因子幅ΔK的控制;在模拟高pH值(pH=93)土壤介质中,加载频率(01 Hz~10 Hz)对裂纹扩展速率无明显影响;在模拟近中性土壤介质中,裂纹扩展速率随加载频率的降低而升高,呈现明显的频率效应.结合裂纹扩展特性,分别建立了X70管线钢在模拟高pH值和近中性土壤介质中,加载频率为01 Hz~10 Hz的裂纹扩展量化模型.
关键词 X70管线钢模拟土壤介质裂纹扩展量化模型    
Abstract:The crack propagation characteristics of X70 pipeline steel in the synthetic soil solution under cyclic loading are investigated.The macroscopical rules of the crack propagation are analyzed as well.Results indicate that the crack propagation is controlled mainly by the crack tip stress intensity factor range ΔK.The loading frequency (0.1 Hz~10 Hz) has little affect on the crack propagation rates in the synthetic high pH soil solution (pH=9.3).The crack propagation rate increases with the decrease of loading frequency (0.1 Hz~10Hz) in the synthetic nearneutral soil solution.Considering the crack ing propagation characteristics,the crack propagation quantitative models of the loading frequencyf=0.1 Hz~10 Hz in the synthetic high pH soil solution and near neutral soil solution are put forward respectively.
Key wordsX70 pipeline steel    synthetic soil solution    crack propagation    quantitative model
收稿日期: 2002-11-20     
ZTFLH:  TG172.4  
通讯作者: 李明星   
Corresponding author: Mingxing Li   

引用本文:

李明星 . X70管线钢在模拟土壤介质中裂纹扩展量化模型[J]. 中国腐蚀与防护学报, 2004, 24(3): 163-167 .
Mingxing Li. CRACK PROPAGATION QUANTITATIVE MODELS OF X70 PIPELINE STEEL IN THE SYNTHETIC SOIL SOLUTION. J Chin Soc Corr Pro, 2004, 24(3): 163-167 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2004/V24/I3/163

[1]DelantyB ,O’BeirneJ .MajorfieldstudycomparespipelineSCCwithcoatings[J].OilGasJournal,1992,90(24):39-44
[2]NationalEnergyBoard.ReportofinquirystresscorrosioncrackingonCanadianoilandgaspipelines[A].MH -2-95[C].1996,9:3-14
[3]CarlEJaske,JohnABeavers.ReviewandproposedimprovementofafailuremodelforSCCofpipeline[A].InternationalPipelineCon ference-Volume1[C],ASME 1998
[4]AhmedTM ,LambertSB ,SutherbyR ,etal.CycliccrackgrowthratesofX -60 pipelinesteelinaneutraldilutesolution[J].Corro sion,1997,53(7):581-590
[5]JackTR ,ErnoB ,KristK ,etal.GenerationofnearneutralpHandhighpHSCCenvironmentsonburiedpipelines[J].Corrosion2000,362-372
[6]ParkinsRN ,BelhimerE ,BlanchardWKJr.Stresscorrosioncrack ingcharacteristicsofarangerofpipelinesteelsincarbonate-bicar bonatesolution[J].Corrosion,1993,49(12):951-966
[7]FangBY ,WangJQ ,ZhuZY ,etal.Thestresscorrosioncrackingofburiedpipelinesinthenear-neutralpHandhighpHsolutions[J].ActaMetall.Sin.,2001,37(5):453-458(方丙炎,王俭秋,朱自勇等.埋地管道在近中性和高pH环境中的应力腐蚀开裂[J].金属学报,2001,37(5):453-458)
[8]WangRong.TheCorrosionFatigueofMetalMaterials[M ].Xi’an:NorthwesternPolytechnicalUniversityPublishingHouse,2001(王荣.金属材料的腐蚀疲劳[M ].西安:西北工业大学出版社,2001)
[9]WangRong.Fracturemodelforcorrosionfatiguecrackpropagationprocess[J].J .Chin.Soc.Corros.Prot.,1998,18(2):87-94(王荣.腐蚀疲劳裂纹扩展的断裂模型[J].中国腐蚀与防护学报,1998,18(2):87-94)
[10]ChuWY ,QiaoLJ,ChenQZ ,etal.FractureandEnvironmentalFracture[M].Beijing:SciencePublishingHouse,2000(褚武扬,乔利杰,陈奇志等.断裂与环境断裂[M ].北京:科学出版社,2000)
[11]QiaoLJ,WangYB ,ChuWY .TheMechanismofStressCorro sionCracking[M ].Beijng:SciencePublishingHouse,1993(乔利杰,王燕斌,褚武扬.应力腐蚀机理[M ].北京:科学出版社,1993)
[12]KlesnilM ,LukasP .Influenceofstrengthandstresshistoryongrowthandstabilizationoffatiguecracks[J].Eng.Fract.Mech.,1972,(4):77-92
[13]BeaversJA ,DurrCL .HighpHSCC :Temperatureandpotentialdependenceforcrackinginfieldenvironments[A].InterPipeConf-Vol1[C],ASME ,1998:423-437
[14][USA]SureshS (author).WangZG ,etal(translator).FatigueofMaterials[M ].Beijing:NationalDefenceIndustryPublishingHouse,1999([美]S .Suresh著.王中光等译.材料的疲劳[M ].北京:国防工业出版社,1999)
[15]LiMX ,WangR ,BaiZQ .AnalysisonthecrackfractographofX70 pipelinesteelinthesynthetichighpHsoilsolution[J].ChinaPetroleumMachinery,2003,31(12):4-8(李明星,王荣,白真权.X70管线钢在模拟高 pH值土壤介质中裂纹断口形貌分析[J].石油机械,2004,31(12):4-8)
[16]LiMX ,WangR ,BaiZQ .InvestigationontheelectrochemicalcharacteristicsofX70pipelinesteelinthesyntheticnearneutralsoilsolution[J].Corros.Sci.Prot.Technol.,2004,16(1):17-20(李明星,王荣,白真权.X70管线钢在模拟近中性土壤介质中的电化学特性研究[J].腐蚀科学与防护技术,2004,16(1):17-20)
[17]QiaoLJ ,LuoJL ,MaoX .Hydrogenevolutionandenrichmentaroundstresscorrosioncracktipsofpipelinesteelsindilutebicar bonatesolution[J].Corrosion,1998;54(2):115-121
[18]GuB ,LuoJL ,MaoX .Hydrogen-facilitatedanodicdissolutiontypestresscorrosioncrackingofpipelinesteelsinnear-neutralpHsolution[J].Corrosion,1999,55(1):96-106
[19]SaenzM ,ProcterRPM .Environmentalcracking(corrosionfa tigueandhydrogenembrittlement)X70linepipesteels[A].In:FatigueandCrackGrowthinOffshoreStructures.Int.Conf.,[C].London,1986.101-108
[1] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[2] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[3] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[4] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[5] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[6] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[7] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[8] 宋博强,陈旭,马贵阳,刘睿. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[9] 赵书振,许立宁,窦娟娟,常炜,路民旭. 醋酸对X70管线钢CO2湿气顶部腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.
[10] 朱若林,张志明,王俭秋,韩恩厚. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[11] 唐占梅,胡石林,张平柱. 316Ti在含氯离子300℃高温水中的应力腐蚀开裂[J]. 中国腐蚀与防护学报, 2012, 32(4): 291-295.
[12] 钟曼英. 氢对2(1/4)Cr-1Mo钢力学性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(3): 236-239.
[13] 孔德军,吴永忠,龙丹,周朝政. 激光冲击处理对X70管线钢焊接接头H2S应力腐蚀影响[J]. 中国腐蚀与防护学报, 2011, 31(2): 125-129.
[14] 贾志军,李晓刚,梁平,王力伟. 成膜电位对X70管线钢在NaHCO3溶液中钝化膜电化学性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(3): 241-245.
[15] 徐松;吴欣强;韩恩厚;柯伟. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹断口研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 119-123.