|
|
|
| 模拟浅海及深海环境中阴极极化对10CrNi5MoV钢氢脆敏感性的影响 |
项琦峰, 赵阳( ), 张涛, 王福会 |
| 东北大学 数字钢铁全国重点实验室 沈阳 110819 |
|
| Influence of Cathodic Polarization on Hydrogen Embrittlement Susceptibility of 10CrNi5MoV Steel in Simulated Shallow-sea and Deep-sea Environment |
XIANG Qifeng, ZHAO Yang( ), ZHANG Tao, WANG Fuhui |
| State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China |
引用本文:
项琦峰, 赵阳, 张涛, 王福会. 模拟浅海及深海环境中阴极极化对10CrNi5MoV钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1599-1609.
Qifeng XIANG,
Yang ZHAO,
Tao ZHANG,
Fuhui WANG.
Influence of Cathodic Polarization on Hydrogen Embrittlement Susceptibility of 10CrNi5MoV Steel in Simulated Shallow-sea and Deep-sea Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1599-1609.
| [1] |
Wang X L, Yu Q, Wang Y. Research status of deep sea materials and corrosion protection technology [J]. Total Corros. Control, 2018, 32(10): 80
|
| [1] |
(王勋龙, 于 青, 王 燕. 深海材料及腐蚀防护技术研究现状 [J]. 全面腐蚀控制, 2018, 32(10): 80)
|
| [2] |
Duan T G, Peng W S, Ding K K, et al. Long-term field exposure corrosion behavior investigation of 316L stainless steel in the deep sea environment [J]. Ocean Eng., 2019, 189: 106405
|
| [3] |
Chen S, Hartt W, Wolfson S. Deep water cathodic protection: Part 2—Field deployment results [J]. Corrosion, 2003, 59: 721
|
| [4] |
Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
|
| [4] |
(侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326)
|
| [5] |
Hao W K, Liu Z Y, Wang X Z, et al. Present situation and prospect of studies on high strength steel and corrosion resistance in naval ship and submarine [J]. Equip. Environ. Eng., 2014, 11(1): 54
|
| [5] |
(郝文魁, 刘智勇, 王显宗 等. 舰艇用高强钢强度及其耐蚀性现状及发展趋势 [J]. 装备环境工程, 2014, 11(1): 54)
|
| [6] |
Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
|
| [7] |
Peng W S, Duan T G, Hou J, et al. Electrochemical corrosion behavior of high strength steel in simulated deep-sea environment under different hydrostatic pressure [J]. J. Mater. Res. Technol., 2023, 23: 2301
|
| [8] |
Sun J Y, Peng W S, Xing S H. Combined effect of stress and dissolved oxygen on corrosion behavior of Ni-Cr-Mo-V high strength steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 755
|
| [8] |
(孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 755)
|
| [9] |
Liu R, Song Y S, Cui Y, et al. Corrosion of high-strength steel in 3.5%NaCl solution under hydrostatic pressure: understanding electrochemical corrosion with tensile stress coupling [J]. Corros. Sci., 2023, 219: 111204
|
| [10] |
Xu H B, Li L, Peng L N, et al. Effect of the calcareous deposits on the stress corrosion cracking behavior of 10Ni5CrMoV high strength steel in deep-sea environment [J]. Int. J. Electrochem. Sci., 2021, 16: 210536
|
| [11] |
Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection [J]. Corros. Sci., 2012, 55: 246
|
| [12] |
Novak P, Yuan R, Somerday B P, et al. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel [J]. J. Mech. Phys. Solids, 2010, 58: 206
|
| [13] |
Moro I, Briottet L, Lemoine P, et al. Hydrogen embrittlement susceptibility of a high strength steel X80 [J]. Mater. Sci. Eng., 2010, 527A: 7252
|
| [14] |
Zhao T L, Wang S Q, Liu Z Y, et al. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater [J]. Corros. Sci., 2021, 179: 109176
|
| [15] |
Chang E, Yan Y G, Li Q F, et al. Effects of cathodic polarization on the hydrogen embrittlement sensitivity of 921A steel in sea water [J]. J. Chin. Soc. Corr. Prot., 2010, 30: 83
|
| [15] |
(常 娥, 闫永贵, 李庆芬 等. 阴极极化对921A钢海水中氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 83)
|
| [16] |
Yang Z Y, Yan Y G, Ma L, et al. Effect of cathodic polarization on the susceptibility to hydrogen embrittlement of 907 steel [J]. Corros. Prot., 2009, 30: 701
|
| [16] |
(杨兆艳, 闫永贵, 马 力 等. 阴极极化对907钢氢脆敏感性的影响 [J]. 腐蚀与防护, 2009, 30: 701)
|
| [17] |
Yang W P. Study on cathodic protection potential of high strength steel in seawater [J]. Dev. Appl. Mater., 2020, 35(4): 24
|
| [17] |
(杨文平. 高强度钢在海水环境中合理阴极保护电位研究 [J]. 材料开发与应用, 2020, 35(4): 24)
|
| [18] |
Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
|
| [18] |
(周 宇, 张海兵, 杜 敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409)
|
| [19] |
Wang X H, Wang C, Tang X H, et al. Study on cathodic protection parameters of X100 steel in three types of simulated soil solutions [J]. Int. J. Electrochem. Sci., 2014, 9: 7660
|
| [20] |
Chen Y C, Wang X H, Li Y C, et al. Electrochemical impedance spectroscopy study for cathodic disbonding test technology on three layer polyethylene anticorrosive coating under full immersion and alternating dry-wet environments [J]. Int. J. Electrochem. Sci., 2016, 11: 10884
|
| [21] |
Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besides electrode potential [J]. Electrochim. Acta, 1990, 35: 831
|
| [22] |
Zhao R R, Xu L K, Xin Y L, et al. Influence of cathodic polarization on stress corrosion cracking susceptibility of 35CrMo steel for high strength bolt in simulated deep-sea environment [J]. Corros. Sci., 2024, 233: 112079
|
| [23] |
Zheng Q B, Zhang L Y, Jie X H, et al. Effect of rotating speed and hydrostatic pressure on erosion-corrosion behavior of X65 pipeline steel [J]. Int. J. Electrochem. Sci., 2017, 12: 2593
|
| [24] |
Cui T M, Dong H Y, Xu X H, et al. Hydrogen-enhanced oxidation of ferrite phase in stainless steel cladding and the contribution to stress corrosion cracking in deaerated high temperature water [J]. J. Nucl. Mater., 2021, 557: 153209
|
| [25] |
Lynch S. Discussion of some recent literature on hydrogen-embrittlement mechanisms: addressing common misunderstandings [J]. Corros. Rev., 2019, 37: 377
|
| [26] |
Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
|
| [27] |
Xu Z Y, Zhang P Y, Zhang B, et al. Effect of hydrostatic pressure on hydrogen behavior on the surface of X70 pipeline steel [J]. J. Mater. Res. Technol., 2023, 25: 5907
|
| [28] |
Xiong X L, Ma H X, Tao X, et al. Hydrostatic pressure effects on the kinetic parameters of hydrogen evolution and permeation in Armco iron [J]. Electrochim. Acta, 2017, 255: 230
|
| [29] |
Liu R, Cui Y, Liu L, et al. Study on the mechanism of hydrostatic pressure promoting electrochemical corrosion of pure iron in 3.5% NaCl solution [J]. Acta Mater., 2021, 203: 116467
|
| [30] |
Xiong X L, Tao X, Zhou Q J, et al. Hydrostatic pressure effects on hydrogen permeation in A514 steel during galvanostatic hydrogen charging [J]. Corros. Sci., 2016, 112: 86
|
| [31] |
Martiniano G A, Bose Filho W W, Garcia R P, et al. Temperature effect on hydrogen embrittlement susceptibility of a high strength martensitic steel [J]. Int. J. Hydrogen Energy, 2024, 110: 457
|
| [32] |
Dwivedi S K, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials [J]. Int. J. Hydrogen Energy, 2019, 44: 28007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|