Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1599-1609     CSTR: 32134.14.1005.4537.2025.060      DOI: 10.11902/1005.4537.2025.060
  研究报告 本期目录 | 过刊浏览 |
模拟浅海及深海环境中阴极极化对10CrNi5MoV钢氢脆敏感性的影响
项琦峰, 赵阳(), 张涛, 王福会
东北大学 数字钢铁全国重点实验室 沈阳 110819
Influence of Cathodic Polarization on Hydrogen Embrittlement Susceptibility of 10CrNi5MoV Steel in Simulated Shallow-sea and Deep-sea Environment
XIANG Qifeng, ZHAO Yang(), ZHANG Tao, WANG Fuhui
State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China
引用本文:

项琦峰, 赵阳, 张涛, 王福会. 模拟浅海及深海环境中阴极极化对10CrNi5MoV钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1599-1609.
Qifeng XIANG, Yang ZHAO, Tao ZHANG, Fuhui WANG. Influence of Cathodic Polarization on Hydrogen Embrittlement Susceptibility of 10CrNi5MoV Steel in Simulated Shallow-sea and Deep-sea Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1599-1609.

全文: PDF(19169 KB)   HTML
摘要: 

10CrNi5MoV低合金高强度钢在深海环境、阴极保护与应力的共同作用下,可能会引发严重的氢脆。本研究采用动电位极化、电化学阻抗谱(EIS)、慢应变速率拉伸(SSRT)等实验方法,结合扫描电镜(SEM)观察断口显微组织,研究了10CrNi5MoV高强钢在实验室模拟浅海(0 m)及深海(1000 m)环境不同阴极极化电位下的氢脆敏感性。结果表明,随着阴极极化电位负移,浅海环境下样品表现出较好的抗氢脆能力,-1050 mV时氢脆敏感性系数接近25%,深海环境下样品氢脆敏感性系数则最高达到了59.7%。深海环境虽抑制腐蚀与析氢反应的进行,却促进了氢向材料内部的扩散,显著提高了材料在阴极保护条件下的氢脆敏感性。

关键词 10CrNi5MoV钢深海环境阴极极化氢脆敏感性慢应变速率拉伸    
Abstract

10CrNi5MoV low-alloy high-strength steel may experience severe hydrogen embrittlement in deep-sea environment, while subjected to stress and cathodic protection. Hence, the hydrogen embrittlement susceptibility of 10CrNi5MoV high-strength steel in the simulated shallow sea (0 m) and deep sea (1000 m) environments by applied polarization potentials was assessed via potentiostat, electrochemical impedance spectroscopy (EIS), slow strain rate tensile (SSRT) and scanning electron microscopy (SEM). With the applied cathodic polarization potential negatively dropped from open circuit potential to -1050 mV, the hydrogen embrittlement susceptibility coefficient of the steel is about 25% in the shallow sea environment. However, which in the deep-sea environment reaches 59.7%. Although the corrosion and hydrogen evolution reactions are suppressed to certain extent in the deep-sea environment, whereas the diffusion of hydrogen atoms inwards the material is promoted, therewith the hydrogen embrittlement susceptibility of the steel is enhanced under cathodic protection.

Key words10CrNi5MoV steel    deep-sea environment    cathodic polarization    hydrogen embrittlement susceptibility    slow strain rate tensile
收稿日期: 2025-02-23      32134.14.1005.4537.2025.060
ZTFLH:  TG174  
通讯作者: 赵阳,E-mail:zhaoyang7402@mail.neu.edu.cn,研究方向为油气工业腐蚀与防护
Corresponding author: ZHAO Yang, E-mail: zhaoyang7402@mail.neu.edu.cn
作者简介: 项琦峰,男,2000年生,硕士生
图1  低温高压电化学测试-慢应变速率拉伸实验装置
图2  SSRT实验片状拉伸样品尺寸与样品处理方法示意图
图3  10CrNi5MoV钢金相显微组织
图4  10CrNi5MoV 钢在模拟浅海及深海环境下的阴极极化曲线
图5  浅海和深海不同极化电位下10CrNi5MoV钢的Nyquist与Bode图
图6  10CrNi5MoV在不同阴极保护电位下的EIS等效电路
EnvironmentPotential / mVRs / Ω·cm2Qf / 10-3 F·cm-2n1Rf / Ω·cm2Qdl / 10-3 F·cm-2n2Rt / Ω·cm2
Shallow-sea (0 m)OCP6.1422.6250.8766.0365.1470.8942310
-8506.1821.9370.8855.7342.2650.89525690
-9506.2512.9000.8263.071.4340.8609890
-10506.884---5.9120.7231140
EnvironmentPotential / mVRs / Ω·cm2Qf / 10-4 F·cm-2n1Rf / Ω·cm2Qdl / 10-3 F·cm-2n2Rt / 104 Ω·cm2
Deep-sea (1000 m)OCP1.1261.6310.84928.262.1740.89315530
-85010.183.1220.85126.452.1390.91922790
-95013.984.4580.7516.767.2320.87817760
-105011.32---5.1750.7472320
表1  浅海和深海环境不同极化电位下10CrNi5MoV钢EIS等效电路拟合参数
图7  10CrNi5MoV钢在浅海与深海环境不同电位下的电荷转移电阻Rt
图8  10CrNi5MoV钢在浅海和深海环境中不同极化电位下的应力-应变曲线
图9  10CrNi5MoV在浅海和深海环境中不同极化电位下的氢脆敏感性系数
图10  浅海环境10CrNi5MoV钢不同极化电位下SSRT后断口形貌
图11  深海环境10CrNi5MoV钢不同极化电位下SSRT后断口形貌
图12  浅海环境10CrNi5MoV 钢不同极化电位下SSRT后断口侧面形貌
图13  深海环境10CrNi5MoV钢不同极化电位下SSRT后断口侧面形貌
图14  10CrNi5MoV钢在模拟浅海阴极极化下的裂纹扩展示意图
图15  10CrNi5MoV钢在模拟深海阴极极化下的裂纹扩展示意图
[1] Wang X L, Yu Q, Wang Y. Research status of deep sea materials and corrosion protection technology [J]. Total Corros. Control, 2018, 32(10): 80
[1] (王勋龙, 于 青, 王 燕. 深海材料及腐蚀防护技术研究现状 [J]. 全面腐蚀控制, 2018, 32(10): 80)
[2] Duan T G, Peng W S, Ding K K, et al. Long-term field exposure corrosion behavior investigation of 316L stainless steel in the deep sea environment [J]. Ocean Eng., 2019, 189: 106405
[3] Chen S, Hartt W, Wolfson S. Deep water cathodic protection: Part 2—Field deployment results [J]. Corrosion, 2003, 59: 721
[4] Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
[4] (侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326)
[5] Hao W K, Liu Z Y, Wang X Z, et al. Present situation and prospect of studies on high strength steel and corrosion resistance in naval ship and submarine [J]. Equip. Environ. Eng., 2014, 11(1): 54
[5] (郝文魁, 刘智勇, 王显宗 等. 舰艇用高强钢强度及其耐蚀性现状及发展趋势 [J]. 装备环境工程, 2014, 11(1): 54)
[6] Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
[7] Peng W S, Duan T G, Hou J, et al. Electrochemical corrosion behavior of high strength steel in simulated deep-sea environment under different hydrostatic pressure [J]. J. Mater. Res. Technol., 2023, 23: 2301
[8] Sun J Y, Peng W S, Xing S H. Combined effect of stress and dissolved oxygen on corrosion behavior of Ni-Cr-Mo-V high strength steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 755
[8] (孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 755)
[9] Liu R, Song Y S, Cui Y, et al. Corrosion of high-strength steel in 3.5%NaCl solution under hydrostatic pressure: understanding electrochemical corrosion with tensile stress coupling [J]. Corros. Sci., 2023, 219: 111204
[10] Xu H B, Li L, Peng L N, et al. Effect of the calcareous deposits on the stress corrosion cracking behavior of 10Ni5CrMoV high strength steel in deep-sea environment [J]. Int. J. Electrochem. Sci., 2021, 16: 210536
[11] Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection [J]. Corros. Sci., 2012, 55: 246
[12] Novak P, Yuan R, Somerday B P, et al. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel [J]. J. Mech. Phys. Solids, 2010, 58: 206
[13] Moro I, Briottet L, Lemoine P, et al. Hydrogen embrittlement susceptibility of a high strength steel X80 [J]. Mater. Sci. Eng., 2010, 527A: 7252
[14] Zhao T L, Wang S Q, Liu Z Y, et al. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater [J]. Corros. Sci., 2021, 179: 109176
[15] Chang E, Yan Y G, Li Q F, et al. Effects of cathodic polarization on the hydrogen embrittlement sensitivity of 921A steel in sea water [J]. J. Chin. Soc. Corr. Prot., 2010, 30: 83
[15] (常 娥, 闫永贵, 李庆芬 等. 阴极极化对921A钢海水中氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 83)
[16] Yang Z Y, Yan Y G, Ma L, et al. Effect of cathodic polarization on the susceptibility to hydrogen embrittlement of 907 steel [J]. Corros. Prot., 2009, 30: 701
[16] (杨兆艳, 闫永贵, 马 力 等. 阴极极化对907钢氢脆敏感性的影响 [J]. 腐蚀与防护, 2009, 30: 701)
[17] Yang W P. Study on cathodic protection potential of high strength steel in seawater [J]. Dev. Appl. Mater., 2020, 35(4): 24
[17] (杨文平. 高强度钢在海水环境中合理阴极保护电位研究 [J]. 材料开发与应用, 2020, 35(4): 24)
[18] Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
[18] (周 宇, 张海兵, 杜 敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409)
[19] Wang X H, Wang C, Tang X H, et al. Study on cathodic protection parameters of X100 steel in three types of simulated soil solutions [J]. Int. J. Electrochem. Sci., 2014, 9: 7660
[20] Chen Y C, Wang X H, Li Y C, et al. Electrochemical impedance spectroscopy study for cathodic disbonding test technology on three layer polyethylene anticorrosive coating under full immersion and alternating dry-wet environments [J]. Int. J. Electrochem. Sci., 2016, 11: 10884
[21] Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besides electrode potential [J]. Electrochim. Acta, 1990, 35: 831
[22] Zhao R R, Xu L K, Xin Y L, et al. Influence of cathodic polarization on stress corrosion cracking susceptibility of 35CrMo steel for high strength bolt in simulated deep-sea environment [J]. Corros. Sci., 2024, 233: 112079
[23] Zheng Q B, Zhang L Y, Jie X H, et al. Effect of rotating speed and hydrostatic pressure on erosion-corrosion behavior of X65 pipeline steel [J]. Int. J. Electrochem. Sci., 2017, 12: 2593
[24] Cui T M, Dong H Y, Xu X H, et al. Hydrogen-enhanced oxidation of ferrite phase in stainless steel cladding and the contribution to stress corrosion cracking in deaerated high temperature water [J]. J. Nucl. Mater., 2021, 557: 153209
[25] Lynch S. Discussion of some recent literature on hydrogen-embrittlement mechanisms: addressing common misunderstandings [J]. Corros. Rev., 2019, 37: 377
[26] Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
[27] Xu Z Y, Zhang P Y, Zhang B, et al. Effect of hydrostatic pressure on hydrogen behavior on the surface of X70 pipeline steel [J]. J. Mater. Res. Technol., 2023, 25: 5907
[28] Xiong X L, Ma H X, Tao X, et al. Hydrostatic pressure effects on the kinetic parameters of hydrogen evolution and permeation in Armco iron [J]. Electrochim. Acta, 2017, 255: 230
[29] Liu R, Cui Y, Liu L, et al. Study on the mechanism of hydrostatic pressure promoting electrochemical corrosion of pure iron in 3.5% NaCl solution [J]. Acta Mater., 2021, 203: 116467
[30] Xiong X L, Tao X, Zhou Q J, et al. Hydrostatic pressure effects on hydrogen permeation in A514 steel during galvanostatic hydrogen charging [J]. Corros. Sci., 2016, 112: 86
[31] Martiniano G A, Bose Filho W W, Garcia R P, et al. Temperature effect on hydrogen embrittlement susceptibility of a high strength martensitic steel [J]. Int. J. Hydrogen Energy, 2024, 110: 457
[32] Dwivedi S K, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials [J]. Int. J. Hydrogen Energy, 2019, 44: 28007
[1] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[2] 程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[3] 李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[4] 汤熠鑫, 张飞, 崔中雨, 崔洪芝, 李燚周. 氢对2205双相不锈钢在3.5%NaCl溶液中缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[5] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[6] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[7] 徐云峰, 王少峰, 何龙, 刘冬, 黄峰, 刘静. EPS处理对QStE700TM钢氢脆敏感性影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[8] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[9] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[10] 孟凡帝, 高浩东, 刘莉, 崔宇, 刘叡, 王福会. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[11] 段体岗, 李祯, 彭文山, 张彭辉, 丁康康, 郭为民, 侯健, 马力, 许立坤. 深海环境5A06铝合金腐蚀行为与表面特性[J]. 中国腐蚀与防护学报, 2023, 43(2): 352-358.
[12] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[13] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[14] 王贞, 刘静, 张施琦, 黄峰. 应变速率对预充氢DP780钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 106-112.
[15] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.