Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 869-880     CSTR: 32134.14.1005.4537.2024.216      DOI: 10.11902/1005.4537.2024.216
  研究报告 本期目录 | 过刊浏览 |
花生壳提取物对冷轧钢在盐酸溶液中的缓蚀作用及机理
仇莉1,2, 李向红1, 雷沙1, 郭崎1, 邓书端1()
1 西南林业大学材料与化学工程学院 昆明 650224
2 盐城幼儿师范高等专科学校建筑工程学院 盐城 224000
Corrosion Inhibition of Peanut Shell Extract on Cold Rolled Steel in Hydrochloric Acid Solution
QIU Li1,2, LI Xianghong1, LEI Sha1, GUO Qi1, DENG Shuduan1()
1 College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
2 Architectural Engineering Institute of Yancheng Kindergarten Teachers College, Yancheng 224000, China
引用本文:

仇莉, 李向红, 雷沙, 郭崎, 邓书端. 花生壳提取物对冷轧钢在盐酸溶液中的缓蚀作用及机理[J]. 中国腐蚀与防护学报, 2025, 45(4): 869-880.
Li QIU, Xianghong LI, Sha LEI, Qi GUO, Shuduan DENG. Corrosion Inhibition of Peanut Shell Extract on Cold Rolled Steel in Hydrochloric Acid Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 869-880.

全文: PDF(9991 KB)   HTML
摘要: 

采用回流提取法对农林废弃物花生壳进行提取,制备出花生壳提取物(PSE)。利用失重实验、电化学实验(动电位极化曲线PDP和电化学阻抗谱EIS)、金相显微镜(MM)和扫描电子显微镜(SEM)研究了PSE对冷轧钢(CRS)在盐酸(HCl)溶液中的缓蚀性能及作用机理,并探究了缓蚀体系溶液的表面张力和电导率与缓蚀剂PSE性能的关系。结果表明:PSE在1.0 mol/L HCl 溶液中对CRS具有优越的腐蚀抑制效果,缓蚀率(ηw)随着PSE浓度(c)的升高而增大。40 ℃下,添加200 mg/L PSE后,缓蚀率可高达93.15%。缓蚀率随着酸浓度的增加而降低,随着缓蚀时间的延长而减弱。PSE在CRS表面的吸附符合Langmuir单分子层吸附模型,|ΔG0|在20~40 kJ/mol之间,说明PSE通过物理和化学的混合作用吸附在CRS表面。PSE是同时抑制阴极析氢反应和阳极溶解反应的混合型抑制剂。Nyquist图由单一的容抗弧组成,CRS在酸介质中的腐蚀由电荷转移电阻控制。MM和SEM的微观形貌证实了PSE有效阻止了HCl对CRS的侵蚀。缓蚀后的CRS表面疏水性较缓蚀前的CRS表面增强。缓蚀后的溶液电导率较缓蚀前的电导率降低,表面张力随PSE浓度的添加呈下降趋势,缓蚀后的溶液表面张力较缓蚀前有所增加。

关键词 缓蚀PSE冷轧钢盐酸吸附    
Abstract

Peanut shell extract was prepared by reflux method using forestry and agricultural residue of peanut shell as raw materials. The corrosion inhibition properties of the peanut shell extract (PSE) on cold-rolled steel (CRS) in hydrochloric acid (HCl) solution was studied using mass loss measurement, potentiodynamic polarization curve (PDP) and electrochemical impedance spectroscopy (EIS), metallographic microscopy (MM), and scanning electron microscopy (SEM). Additionally, the relationship between the surface tension and conductivity of the corrosion inhibitor solution and the performance of PSE was also investigated. The results indicate that PSE exhibits excellent inhibition properties for CRS in 1.0 mol/L HCl solution, with the inhibition efficiency (ηw) increasing as the concentration of PSE increases. The inhibition efficiency (ηw) can reach up to 93.15% with the addition of 200 mg/L PSE at 40 ℃. However, the inhibition efficiency decreases with higher acid concentration and with longer inhibition time. The adsorption of PSE on the CRS surface follows the Langmuir monolayer adsorption model, with |ΔG0| in the range of 20 kJ/mol to 40 kJ/mol. This indicates that the adsorption of PSE on the CRS surface involves a combination of physical and chemical interactions. PSE acts as a mixed inhibitor, effectively inhibiting both the cathodic hydrogen evolution reaction and the anodic dissolution reaction. The Nyquist diagram features a single capacitive reactance arc, indicating that the corrosion of CRS in an acidic medium is primarily inhibited by charge transfer resistance. The microtopography analysis using MM and SEM confirmed that PSE effectively prevented the corrosion of CRS by HCl. In comparison to the bare surface, the surface hydrophobicity of CRS increased after inhibition test. The conductivity of the solution decreased after inhibition test, and the surface tension decreased with increasing PSE concentration. The surface tension of the solution after inhibition test was higher than that before.

Key wordsinhibition    peanut shell extract    cold-rolled steel (CRS)    HCl    adsorption
收稿日期: 2024-07-22      32134.14.1005.4537.2024.216
ZTFLH:  TG174.42  
基金资助:国家自然科学基金(52161016);云南省教育厅研究生项目(2023Y0696);云南省农业基础研究联合专项重点项目(202101BD070001-017);云南省大学生创新创业训练计划
通讯作者: 邓书端,E-mail:dengshuduan@163.com,研究方向为缓蚀剂
Corresponding author: DENG Shuduan, E-mail: dengshuduan@163.com
作者简介: 仇 莉,女,1989年生,博士,讲师
图1  PSE的提取路线
图2  20~50 ℃时1.0 mol/L HCl溶液中腐蚀速率(v)和缓蚀率(ηw)与PSE浓度(c)的变化关系曲线
图3  不同温度下1.0 mol/L HCl溶液中c/θ-c关系
T / ℃r2SlopeK / L·mg-1
200.99951.080.16
300.99911.080.14
400.99770.980.06
500.99290.920.02
表1  c/θ-c的线性拟合参数
图4  吸附热力学的拟合曲线lnK-1/T
T / ℃ΔG0 / kJ·mol-1ΔH0 / kJ·mol-1ΔS0 / J·mol-1·K-1
20-29.1352.40278.12
30-29.8198.33
40-28.7691.84
50-26.8082.93
表2  1.0 mol/L HCl溶液中PSE在钢表面的吸附热力学参数
图5  40 ℃时盐酸溶液中缓蚀率(ηw)、腐蚀速率(v)与盐酸浓度(C)的关系
Inhibitorrk / g·m-2·h-1B / g·m-2·h-1·L·mol-1
00.834819.280.27
PSE0.98030.841.19
表3  lnv-C直线的线性回归参数(40 ℃)
图6  40 ℃时盐酸溶液中缓蚀率(ηw)、腐蚀速率(v)随时间(t)的变化关系曲线
Solutionβ / h-1t1/2 / h
HCl3.4 × 10-42.0 × 103
PSE + HCl5.8 × 10-51.2 × 104
表4  CRS不同浸泡时间的腐蚀动力学参数
图7  20 ℃下钢电极在1.0 mol/L HCl溶液中含和不含PSE的极化曲线
c / mg·L-1Ecorr / mV vs SCEIcorr / μA·cm-2bc / mV·dec-1ba / mV·dec-1ηP / %SD
0-0.44342-11493
20-0.43208-1378639.22.0
100-0.45103-1428669.93.7
200-0.4568-14910180.14.2
表5  20 ℃时CRS在1.0 mol/L HCl溶液中含不同浓度PSE的极化拟合参数
图8  20 ℃下,钢电极在1.0 mol/L HCl溶液中不含和含不同浓度PSE的EIS图谱
c / mg·L-1Rs / Ω·cm2Rt / Ω·cm2CPE / μΩ·s a ·cm-2afmax / HzCdl / μF·cm-2χ2 / 10-3ηR / %SD
01.448.8539.10.865723.95275.08.3-
201.4164.6315.70.77937.88133.46.270.33.4
1001.1355.8220.00.77764.52104.58.986.32.8
2001.3390.2152.50.80944.5280.66.987.54.6
表6  20 ℃时CRS在1.0 mol/L HCl溶液中含不同浓度PSE的EIS参数
图9  缓蚀剂浓度c和电导率、表面张力的关系
图10  1.0 mol/L HCl溶液中不含和含PSE的CRS表面金相显微镜形貌
图11  1.0 mol/L HCl溶液中不含和含PSE的CRS表面SEM形貌
图12  CRS表面在不含或含200 mg/L PSE浸泡前后的接触角结果
图13  化合物的化学结构式
图14  CRS在1.0 mol/L HCl溶液中的腐蚀机理和PSE对CRS的缓蚀机理
[1] Li Y F, Li Z Q, Ma T, et al. Corrosion mitigation of peanut shell extract as a novel effective corrosion inhibitor for carbon steel in sulfuric acid medium [J]. J. Mater. Res. Technol., 2023, 27: 4706
[2] Qiu L, Li X H, Xu D K, et al. Comparison of the corrosion inhibition property on cold rolled steel in sulfuric acid media between reflux and ultrasound extracts from rapeseed meal [J]. Ind. Crops Prod., 2024, 216: 118809
[3] Long W J, Tang J, Luo Q L, et al. Corrosion inhibition performance of biomass-derived carbon dots on Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 807
[3] (龙武剑, 唐 杰, 罗启灵 等. 生物质碳点对Q235钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 807)
doi: 10.11902/1005.4537.2023.233
[4] Luo Z G, Zhang Y, Wang H, et al. Modified Nano-lignin as a novel biomass-derived corrosion inhibitor for enhanced corrosion resistance of carbon steel [J]. Corros. Sci., 2024, 227: 111705
[5] Qiu L, Li X H, Lei R, et al. Inhibition performance of coconut diethanolamide on cold rolled steel in trichloroacetic acid solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 301
[5] (仇 莉, 李向红, 雷然 等. 椰油酸二乙醇酰胺对钢在三氯乙酸溶液中的缓蚀性能 [J]. 中国腐蚀与防护学报, 2023, 43: 301)
[6] Zhang W Y, Zhang D Q, LI X H, et al. Modified nano-lignin as a novel biomass-derived corrosion inhibitor for enhanced corrosion resistance of carbon steel [J]. Corros. Sci., 2024, 227: 111705
[7] Li X H, Deng S D, Lei R, et al. Synergistic effect of walnut green husk extract complex inhibitors on steel in citric acid [J]. J. Southwest For. Univ., 2022, 42(4): 1
[7] (李向红, 邓书端, 雷 然 等. 核桃青皮提取物复配缓蚀剂对柠檬酸溶液中钢的协同效应 [J]. 西南林业大学学报, 2022, 42(4): 1)
[8] Wei H Y, Heidarshenas B, Zhou L S, et al. Green inhibitors for steel corrosion in acidic environment: state of art [J]. Mater. Today Sustain., 2020, 10: 100044
[9] Singh P, Chauhan D S, Chauhan S S, et al. Chemically modified expired Dapsone drug as environmentally benign corrosion inhibitor for mild steel in sulphuric acid useful for industrial pickling process [J]. J. Mol. Liq., 2019, 286: 110903
[10] Guo L, Tan B C, Zuo X L, et al. Eco-friendly food spice 2-Furfurylthio-3-methylpyrazine as an excellent inhibitor for copper corrosion in sulfuric acid medium [J]. J. Mol. Liq., 2020, 317: 113915
[11] Feng L, Zhang S T, Qiang Y J, et al. The synergistic corrosion inhibition study of different chain lengths ionic liquids as green inhibitors for X70 steel in acidic medium [J]. Mater. Chem. Phys., 2018, 215: 229
[12] Kumar A, Das C. Corrosion inhibition of mild steel by Praecitrullus fistulosus (tinda fruit and peel) extracts [J]. Sci. Total Environ., 2024, 929: 172569
[13] Zhang X, Tan B C, Li W P. Plant extracts as environmentally sustainable corrosion inhibitors I [A]. GuoL, VermaC, ZhangDW. Eco-Friendly Corrosion Inhibitors: Principles, Designing and Applications [M]. Elsevier, 2022: 263
[14] Fattah-Alhosseini A, Noori M. Corrosion inhibition of SAE 1018 carbon steel in H2S and HCl solutions by lemon verbena leaves extract [J]. Measurement, 2016, 94: 787
[15] Batah A, Chaouiki A, El Mouden O I, et al. Almond waste extract as an efficient organic compound for corrosion inhibition of carbon steel (C38) in HCl solution [J]. Sustainable Chem. Pharm., 2022, 27: 100677
[16] Haque J, Verma C, Srivastava V, et al. Corrosion inhibition of mild steel in 1M HCl using environmentally benign Thevetia peruviana flower extracts [J]. Sustainable Chem. Pharm., 2021, 19: 100354
[17] Kaya F, Solmaz R, Geçibesler İ H. Investigation of adsorption, corrosion inhibition, synergistic inhibition effect and stability studies of Rheum ribes leaf extract on mild steel in 1 M HCl solution [J]. J. Taiwan Inst. Chem. Eng., 2023, 143: 104712
[18] Alrefaee S H, Rhee K Y, Verma C, et al. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements [J]. J. Mol. Liq., 2021, 321: 114666
[19] Li X H, Deng S D, Xu X. Extraction and preparation of walnut green husk inhibitor and its inhibitive action [J]. Fine Chem., 2018, 35: 1825
[19] (李向红, 邓书端, 徐 昕. 核桃青皮缓蚀剂的提取制备及其缓蚀性能 [J]. 精细化工, 2018, 35: 1825)
[20] Zhang F, Xu X, Lei R, et al. Inhibition effect of orange peel extract on aluminum in hydrochloric acid solution [J]. J. Southwest For. Univ., 2022, 42(2): 103
[20] (张 富, 徐 昕, 雷 然 等. 橙子皮提取物对HCl溶液中铝的缓蚀作用研究 [J]. 西南林业大学学报, 2022, 42(2): 103)
[21] Lei R, Deng S D, Qiang Y J, et al. Sunflower stalk extract as a novel green inhibitor on aluminium corrosion in HCl solution [J]. Colloids Surf. Physicochem. Eng. Asp., 2024, 687A: 133358
[22] Yue Q. Research progress in comprehensive utilization of peanut hull [J]. Sci. Technol. Cere. Oils Foods, 2013, 21(5): 40
[22] (岳 青. 花生壳综合利用研究进展 [J]. 粮油食品科技, 2013, 21(5): 40)
[23] Mu R H. Study on comprehensive utilization of peanut Hull [J]. Mod. Agric. Sci. Technol., 2010, (4): 374
[23] (穆瑞荷. 花生壳综合利用研究 [J]. 现代农业科技, 2010, (4): 374)
[24] Lecumberri E, Mateos R, Izquierdo-Pulido M, et al. Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.) [J]. Food Chem., 2007, 104: 948
[25] Yang C. Soybean milk residue ensiled with peanut hulls: fermentation acids, cell wall composition, and silage utilization by mixed ruminal microorganisms [J]. Bioresour. Technol., 2005, 96: 1419
[26] Ye R R, Pan H T, Zhang Q X. Studies on the different composting prior disposals of the peanut hulls for the growing media [J]. Chin. Agri. Sci. Bull., 2009, 25(23): 279
[26] (叶瑞睿, 潘会堂, 张启翔. 花生壳作为栽培基质的前期处理研究 [J]. 中国农学通报, 2009, 25(23): 279)
[27] Li X Z. Application of peanut shell in plywood production [J]. J. Shandong. Fore. Sci. Technol., 1998, (3): 41
[27] (李西忠. 花生壳在胶合板生产中的应用 [J]. 山东林业科技, 1998, (3): 41)
[28] Al-Othman Z A, Ali R, Naushad M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies [J]. Chem. Eng. J., 2012, 184: 238
[29] Du P F, Deng S D, Du G B, et al. Synergistic inhibition effect of Mikania micrantha extract with potassium iodide on the corrosion of cold rolled steel in methanesulfonic acid solution [J]. Corros. Sci., 2023, 220: 111296
[30] Zhou W B, Li M R, Zhou X, et al. Oil soluble Mannich base corrosion inhibitor for corrosion inhibition of copper in transformer oil [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 453
[30] (周文彬, 李梦冉, 周 欣 等. 油溶性曼尼希碱缓蚀剂对紫铜在变压器油中的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 453)
doi: 10.11902/1005.4537.2023.077
[31] Chen S J, Tao A N, Zhang H, et al. Study on corrosion inhibition behavior of photinia Leaf extracts for Q235 Steel in HCl medium [J]. Mater. Prot., 2024, 57(2): 51
[31] (陈书军, 陶爱宁, 张 海 等. 石楠叶提取物在盐酸中对Q235钢的缓蚀行为研究 [J]. 材料保护, 2024, 57(2): 51)
[32] Pareek S, Jain D, Hussain S, et al. A new insight into corrosion inhibition mechanism of copper in aerated 3.5wt.%NaCl solution by eco-friendly Imidazopyrimidine Dye: experimental and theoretical approach [J]. Chem. Eng. J., 2019, 358: 725
[33] Wei G F, Deng S D, Shao D D, et al. Inhibition action of Machilus yunnanensis leaves extract on corrosion of Al-plate in HCl medium [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 601
[33] (魏高飞, 邓书端, 邵丹丹 等. 滇润楠叶提取物对铝在HCl中的缓蚀性能 [J]. 中国腐蚀与防护学报, 2024, 44: 601)
doi: 10.11902/1005.4537.2023.234
[34] Zhang F, Deng S D, Wei G F, et al. Alternanthera philoxeroides extract as a corrosion inhibitor for steel in Cl3CCOOH solution [J]. Int. J. Electrochem. Sci., 2023, 18: 100057
[35] Meng W B, Shi J Y, Zhang X Y, et al. Effects of peanut shell and skin extracts on the antioxidant ability, physical and structure properties of starch-chitosan active packaging films [J]. Int. J. Biol. Macromol., 2020, 152: 137
doi: S0141-8130(20)30972-7 pmid: 32092422
[1] 翟亚如, 熊金平, 赵景茂. 3.5%NaCl溶液中硝基巴比妥酸对AZ31BAZ91D镁合金腐蚀的缓蚀作用及机理研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 916-926.
[2] 侯晓犇, 刘宁, 扈俊颖. 天然气集输倾斜管道腐蚀行为及缓蚀剂分布研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 780-786.
[3] 毛春奎, 朱志平, 李涛, 周上明, 阳霍. 中水回用于火电厂循环冷却水时的药剂优选与应用研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 675-686.
[4] 万红江, 明洪亮, 王俭秋, 韩恩厚. H2O2CO掺杂对X52管线钢氢脆敏感性影响研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[5] 穆显菊, 李向红, 雷然, 邓书端. 咖啡果皮提取物对钢在三氯乙酸溶液中的缓蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1465-1475.
[6] 唐莉清, 李向红, 朱平, 武中发, 雷然, 徐娟. 吐温-80对一种冷轧钢在氨基磺酸溶液中的缓蚀性能及机理研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1538-1546.
[7] 石成杰, 雷然, 邓书端, 徐娟, 邵丹丹, 郭青青, 李向红. 小蓬草提取物对钢在HCl介质中的缓蚀作用[J]. 中国腐蚀与防护学报, 2024, 44(5): 1189-1199.
[8] 吴浩天, 张天遂, 李广芳, 刘宏芳. 中性水系锌离子电池负极缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1089-1099.
[9] 李鑫, 韦博鑫, 鲁仰辉, 孙晨, 于文涛, 徐猛, 刘伟. 临氢环境下管线钢氢损伤机理研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[10] 程学雨, 叶桓, 郭程皓, 卢立新, 李伟哲. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1323-1331.
[11] 欧阳嘉露, 王茜茜, 韩霞, 王子明. 油水交替环境中咪唑啉对CO2 腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
[12] 龙武剑, 唐杰, 罗启灵, 丘章鸿, 王海龙. 生物质碳点对Q235钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[13] 冯礼奎, 程一杰, 宋小宁, 于志勇, 严梓轩, 张大全. 1, 2, 4-三唑在模拟调相机转子内冷却水中对铜的缓蚀作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 772-780.
[14] 魏高飞, 邓书端, 邵丹丹, 徐娟, 李向红. 滇润楠叶提取物对铝在HCl中的缓蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(3): 601-611.
[15] 周龙, 鲁骏, 丁文珊, 李昊, 陶涛, 师超, 邵亚薇, 刘光明. 不同植酸盐对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.