|
|
0.1%NaHSO3盐雾条件下T91钢的腐蚀行为 |
冯超1,2, 彭碧草1,2, 谢亿1,2, 王军1,2, 李明欢3, 吴堂清3( ), 尹付成3 |
1 国网湖南电力公司电力科学研究院 长沙 410007 2 湖南省湘电锅炉压力容器检验中心有限公司 长沙 410007 3 湘潭大学材料科学与工程学院 湘潭 411105 |
|
Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution |
Chao FENG1,2, Bicao PENG1,2, Yi XIE1,2, Jun WANG1,2, Minghuan LI3, Tangqing WU3( ), Fucheng YIN3 |
1 State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China 2 Hunan Xiangdian Boiler & Pressure Vessel Test Center Ltd., Changsha 410007, China; 3 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China |
引用本文:
冯超, 彭碧草, 谢亿, 王军, 李明欢, 吴堂清, 尹付成. 0.1%NaHSO3盐雾条件下T91钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
Chao FENG,
Bicao PENG,
Yi XIE,
Jun WANG,
Minghuan LI,
Tangqing WU,
Fucheng YIN.
Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 583-589.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2016.211
或
https://www.jcscp.org/CN/Y2017/V37/I6/583
|
[1] | Deng D A, Zhang Y B, Li S, et al.Influence of solid-state phase transformation on residual stress in P92 steel welded joint[J]. Acta Metall. Sin., 2016, 52: 394(邓德安, 张彦斌, 李索等. 固态相变对P92钢焊接接头残余应力的影响[J]. 金属学报, 2016, 52: 394) | [2] | Deng D A, Ren S D, Li S, et al.Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment[J]. Acta Metall. Sin., 2017, 53: 1532(邓德安, 任森栋, 李索等. 多重热循环和约束条件对P92钢焊接残余应力的影响[J]. 金属学报, 2017, 53: 1532) | [3] | Ampornrat P, Was G.Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water[J]. J. Nucl. Mater., 2007, 371: 1 | [4] | Chen Y, Sridharan K, Allen T.Corrosion behavior of ferritic-martensitic steel T91 in supercritical water[J]. Corros. Sci., 2006, 48: 2843 | [5] | Liu G M, Liu K S, Mao X F, et al.Hot corrosion of T91 steel in molten mixture of KCl+Na2SO4+K2SO4[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 23(刘光明, 刘康生, 毛晓飞等. T91钢在KCl+Na2SO4+K2SO4熔融盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37: 23) | [6] | Zhang S S, Cheng G, Zeng Q M.Failure analysis for oxide scale on inner side of T91 high temperature superheater tube[J]. Corros. Sci. Prot. Technol., 2016, 28: 259(张山山, 陈光, 曾庆猛. T91钢高温过热器内壁氧化皮的失效分析[J]. 腐蚀科学与防护技术, 2016, 28: 259) | [7] | Zhang D Q, Xu J J.Influence of steam content on oxidation of SA213 T91 steel at 650 ℃[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 349(张都清, 徐敬军. 水蒸汽含量对SA213 T91钢650 ℃氧化行为的影响[J]. 中国腐蚀与防护学报, 2009, 29: 349) | [8] | Shi Q Q, Liu J, Yan W, et al.High temperature oxidation behavior of SIMP steel and T91 steel at 800 ℃[J]. Chin. J. Mater. Res., 2016, 30: 81(石全强, 刘坚, 严伟等. SIMP钢和T91钢在800 ℃的高温氧化行为[J]. 材料研究学报, 2016, 30: 81) | [9] | Tomlinson L, Cory N J.Hydrogen emission during the steam oxidation of ferritic steels: Kinetics and mechanism[J]. Corros. Sci., 1989, 29: 939 | [10] | Gao W H, Shen Z, Zhang L F.Corrosion behavior of T91 steel in supercritical water[J]. Corros. Prot., 2016, 37: 444(高文华, 沈朝, 张乐福. T91钢在超临界水环境中的腐蚀性能[J]. 腐蚀与防护, 2016, 37: 444) | [11] | Li X G, Wang X G, He J W.The property of water vapor oxidation resistance of T91 steel treated by shot blasted and electrophoresis deposited RE coating[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 101(李辛庚, 王学刚, 何嘉文. 喷丸与电泳沉积稀土薄膜复合处理提高T91钢抗水蒸气氧化性能的研究[J]. 中国腐蚀与防护学报, 2002, 22: 101) | [12] | Xia D H, Song S Z, Li J, et al.On-line monitoring atmospheric corrosion of metal materials by using a novel corrosion electrochemical sensor[J]. Corros. Sci. Prot. Technol., 2017, 29: 581(夏大海, 宋诗哲, 李健等. 新型腐蚀电化学传感器在金属材料大气腐蚀现场检测中的应用[J]. 腐蚀科学与防护技术, 2017, 29: 581) | [13] | Xu H, Yuan J, Zhu Z L, et al.Oxidation behavior of ferritic-martensitic steel P92 exposed to supercritical water at 600 ℃/25 MPa[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 119(徐鸿, 袁军, 朱忠亮等. 铁素体-马氏体P92钢在600 ℃/25 MPa超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2014, 34: 119) | [14] | Zhang Q L, Wang Q J, Liu C L.Analysis of corrosion reason for polished T91 seamless tube[J]. Bao-Steel Technol., 2014, 36: 61(张清廉, 王起江, 刘彩玲. 抛光态T91无缝管腐蚀原因分析[J]. 宝钢技术, 2014, 36: 61) | [15] | Liu Y W, Wang Z Y, Wang J, et al.Corrosion behavior of hot-dip galvanized steel for power transmission tower in simulated acid rain atmospheric environment[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 426(刘雨薇, 王振尧, 王军等. 输电塔杆用热浸镀锌钢在模拟酸雨大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34: 426) | [16] | Yin Y Q, Zhao J B, Cheng X Q, et al.Corrosion rules and mechanism of high strength steel of Q450NQRl[J]. Sci. Technol. Rev., 2012, 30: 48(尹雨群, 赵晋斌, 程学群等. 高强耐候钢Q450NQR1腐蚀规律和机制[J]. 科技导报, 2012, 30: 48) | [17] | Usher K M, Kaksonen A H, Cole I, et al.Critical review: microbially influenced corrosion of buried carbon steel pipes[J]. Int. Biodeterior. Biodegrad., 2014, 93: 84 | [18] | Jia R, Tan J L, Jin P, et al.Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm[J]. Corros. Sci., 2018, 130: 1 | [19] | Xu D K, Li Y C, Song F M, et al.Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis[J]. Corros. Sci., 2013, 77: 385 | [20] | Zhang P Y, Xu D K, Li Y C, et al.Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm[J]. Bioelectrochemistry, 2015, 101: 14 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|