Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 93-100    DOI: 10.11902/1005.4537.2016.013
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of Cr Bearing Weathering Steel in Simulated Marine Atmosphere
Piaopiao ZHANG,Zhongmin YANG(),Ying CHEN,Huimin WANG
Structural Steel Institute, Central Iron and Steel Research Institute, Beijing 100081, China
Download:  HTML  PDF(7750KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three different low alloy steels 1Cr-0.5Al-0.3Mo, 5Cr-0.4Ni-0.3Cu and 10Cr-0.3Ni were designed, then taking steel 20MnSi as a reference, their corrosion behavior was comparatively investigated in simulated marine atmosphere by means of periodic immersion accelerated corrosion test and electrochemical test, as well as XRD, SEM and EDS etc. In addition, electrochemical performance of the formed rust layer was assessed. The results showed that the corrosion rate of the test steels was decreased with the increasing Cr content, the formed rusts of the steels with 1% and 5%Cr composed of two layers with an inner layer of alternating band-like structure with Cr enriched sub-layers and Cr depleted sub-layers. While the steel with 10%Cr was passivated during the test. Besides, with the extending corrosion time, the corrosion rate of the steel with 5%Cr firstly increased and then stabilized, but it kept very low level for the steel with 10%Cr, and it decreased for the steel 20MnSi. Cr enhanced the free-corrosion potential and charge transfer resistance of the steels, thereby improved the compactness of the formed rusts.

Key words:  weathering steel      chromium content      corrosion resistance      marine atmospheric environment     
Received:  13 January 2016     

Cite this article: 

Piaopiao ZHANG,Zhongmin YANG,Ying CHEN,Huimin WANG. Corrosion Behavior of Cr Bearing Weathering Steel in Simulated Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 93-100.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.013     OR     https://www.jcscp.org/EN/Y2017/V37/I2/93

Steel C Si Mn P S Cr Al Ni Cu Mo Fe
1R 0.109 0.404 0.553 0.0064 0.0045 1.011 0.513 0.019 0.37 0.3365 Bal.
2R 0.101 0.177 0.666 0.0057 0.0040 5.312 <0.01 0.396 0.337 <0.005 Bal.
3R 0.095 0.330 1.240 0.0080 0.0070 10.780 <0.01 0.340 <0.01 <0.005 Bal.
20MnSi 0.240 0.400 1.330 0.032 0.026 0.019 --- 0.012 0.021 --- Bal.
Table 1  Chemicl compositions of tested steels (mass fraction / %)
Fig.1  Average corrosion rate (a) and relative corrosion resistance (b) of four experimental steels after periodic immersion for 72 h
Fig.2  Corrosion rates of tested steels during periodicimmersion for 216 h
Fig.3  Macro-morphologies of the surfaces of 1R (a), 2R (b), 3R (c) and 20MnSi (d) steels after periodicimmersion for 72 h
Fig.4  Micro-morphologies of the surfaces of 1R (a), 2R (b), 3R (c) and 20MnSi (d) steels after periodicimmersion for 72 h
Fig.5  SEM cross-section images of the rust layers formed on 1R (a), 2R (b), 3R (c) and 20MnSi (d)steels after periodic immersion for 72 h
Fig.6  Cross section images and element distributions of the rust layers of 2R (a, b) and 1R (c) steels
Fig.7  XRD spectra (a) and semi-quantitative constitutes (b) of the rust layers formed after periodic immersion for 72 h
Steel Self-corrosion potential / V Current density mAcm-2 Polarization resistance / Ω
1R -0.382 6.536×10-3 661
2R -0.267 4.796×10-4 1416
3R -0.136 4.137×10-4 2.54×104
20MnSi -0.392 1.244×10-2 344
Table 2  Fitting parameters of polarization curves and EIS of four bare steels
Fig.8  Polarization curves (a) and EIS (b) of four bare steelsin 0.5%NaCl solution
Fig.9  Polarization curves of rusted steels subjected to periodic immersion for 72 h
Fig.10  EIS of rusted 1R, 2R and 20MnSi (a) and 3R (b) steels subjected to periodic immersion for 72 h in 0.5%NaCl solution
Fig.11  Equivalent circuit of rusted steels after periodic immersion for 72 h in 0.5%NaCl solution
[1] Liang C F, Hou W T.Atmospheric corrosion of carbon steels and low alloy steels[J]. Corros. Sci. Prot. Technol., 1995, 7: 183
[1] (梁彩凤, 侯文泰. 碳钢及低合金钢8年大气暴露腐蚀研究[J]. 腐蚀科学与防护技术, 1995, 7: 183)
[2] Ke W.Current investigation into the corrosion cost in China[J]. Total Corros. Control, 2003, 17: 1
[2] (柯伟. 中国工业与自然环境腐蚀调查[J]. 全面腐蚀控制, 2003, 17: 1)
[3] Kihira H, Tanaka M, Yasunami H, et al.3% Ni-advanced weathering steel and its applicability assessing method [R]. Nippon Steel Technical Report, 2004, 90: 33
[4] Yamashita M, Miyuki H, Matsuda Y, et al.The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J]. Corros. Sci., 1994, 36: 283
[5] Iwao M.Translated by Jin Y K. Low-alloy Corrosion Resistance Steels-A History of Development, Application and Research [M]. Beijing: Metallurgical Industry Press, 2004
[5] (松岛岩著, 靳裕康译. 低合金耐蚀钢——开发、发展及研究 [M]. 北京: 冶金工业出版社, 2004)
[6] Qian Y H, Ma C H, Niu D, et al.Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels[J]. Corros. Sci., 2013, 74: 424
[7] Cheng Y F, Bullerwell J, Steward F R.Electrochemical investigation of the corrosion behavior of chromium-modified carbon steels in water[J]. Electrochim. Acta, 2003, 48: 1521
[8] Yang J H, Liu Q Y, Wang X D, et al.The progress of investigation on weathering steel and its rust layer[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 367
[8] (杨景红, 刘清友, 王向东等. 耐候钢及其腐蚀产物的研究概况[J]. 中国腐蚀与防护学报, 2007, 27: 367)
[9] Wang B.Effects and mechanism of Mn, Cr and V-N alloying in low carbon weathering steel [D]. Shenyang: Northeastern University, 2008
[9] (王博. 锰、铬及钒氮合金化在低碳耐候钢中的作用机理 [D]. 沈阳: 东北大学, 2008)
[10] Huang G Q, Dai M A.Corrosion of chromium steels in seawater[J]. Corros. Sci. Prot. Technol., 2000, 12: 315
[10] (黄桂桥, 戴明安. 含铬低合金钢在海水中的腐蚀研究[J]. 腐蚀科学与防护技术, 2000, 12: 315)
[11] Huang G Q.Effect of chromium element on corrosion resistance of steels in seawater[J]. Corros. Sci. Prot. Technol., 2000, 12: 86
[11] (黄桂桥. Cr对钢耐海水腐蚀性的影响[J]. 腐蚀科学与防护技术, 2000, 12: 86)
[12] Yang D S.The rust layer analysis of chromium seawater corrosion resistant steel[J]. Res. Iron Steel, 1989, 17(4): 55
[12] (杨德仕. 含铬耐海水腐蚀钢锈层分析[J]. 钢铁研究, 1989, 17(4): 55)
[13] Zhang P P, Yang Z M, Chen Y.The corrosion behavior of new Cr-Ni-Cu low alloy seawater corrosion resistant steel [A]. The seventh HSLA International Conference[C]. Hangzhou, 2015
[14] Yamashita M, Nagano H, Misawa T, et al.Structure of protective rust layers formed on weathering steels by long-term exposure in the industrial atmospheres of Japan and North America[J]. ISIJ Int., 1998, 38: 285
[15] Yamashita M, Miyuki H, Nagano H, et al.Compositional gradient and ion selectivity of Cr-substituted fine goethite as the final protective rust layer on weathering steel[J]. Tetsu-to-Hagane, 1997, 83: 448
[16] Liu S, Zhao X, Chen C W, et al.Corrosion behavior of pipeline steel X65 in oilfield[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 394
[16] (刘栓, 赵霞, 陈长伟等. 油田输油管线钢X65的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35: 394)
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] ZHANG Tianyi,LIU Wei,FAN Yueming,LI Shimin,DONG Baojun,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. Effect of Synergistic Action of Cu/Ni on Corrosion Resistance of Low Alloy Steel in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[12] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[13] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[14] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[15] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
No Suggested Reading articles found!