Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (4): 403-408    DOI: 10.11902/1005.4537.2017.113
Current Issue | Archive | Adv Search |
Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters
Zhenhua WANG1(), Yang BAI1,2, Xiao MA1, Shaohua XING1
1 State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute,Qingdao 266101, China
2 College of Mechanical and Electrical Engineering, University of China Petroleum (East China), Qingdao 266580, China
Download:  HTML  PDF(2420KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The galvanic corrosion for the couple of TA2 Ti-alloy and Cu-Ni alloy, which was adopted typically for seawater pipeline of ship, was numerically simulated by means of the numerical simulation technique based on the boundary element method. In the meanwhile, the measured potentiodynamic polarization curves of Ti-alloy and Cu-alloy in static and flow seawater are used as reference as the boundary conditions for the numerical simulation. The following items are mainly concerned in the numerical simulation, namely the distributions of galvanic corrosion potential and the galvanic corrosion current density corresponding to the given parameters such as varying pipe radius, medium velocity and insulation grade etc. The results showed that the most severe corrosion area emerged in the place, where the two electrodes directly connected for the couple system of TA2 and B10 (area ratio 1:1), with a corrosion severity of about 4 times of that appeared in the case of natural corrosion. The galvanic corrosion rate shows a positive correlation with the pipe diameter and the media velocity.

Key words:  Ti-alloy      Cu-alloy      seawater piping      galvanic corrosion      numerical simulation     
Received:  13 July 2017     
ZTFLH:  TG174.461  

Cite this article: 

Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 403-408.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.113     OR     https://www.jcscp.org/EN/Y2018/V38/I4/403

Alloy Cu Ti Ni Mn Fe C Zn Si O H
B10 85.6 --- 10.13 0.83 1.71 --- 0.02 1.71 --- ---
TA2 --- 99.2 --- --- 0.3 0.1 --- 0.15 0.2 0.015
Table 1  Chemical compositions of B10 Cu-alloy and TA2 Ti-alloy (mass fraction / %)
Fig.1  Schematic diagram of flow channel dynamic medium electrochemical measurement device
Fig.2  Micro-unit of corrosion system
Fig.3  Typical tube-tube boundary element model: (a) computational size model, (b) finite element mesh model
Fig.4  Polarization curves of B10 alloy (a) and TA2 titanium alloy (b) under different conditions
Alloy Corrosion potential / V Current density / mAm-2
TA2 -0.077 1.105×10-8
B10 -0.265 1.209×10-6
Table 2  Electrochemical parameters of B10 copper-nickel alloy and TA2 titanium alloy
Fig.5  Coupling potential distribution for seawater pipeline in static seawater
Fig.6  Variations of potential (a) and current density (b) with pipeline axial distance in galvanic corrosion process (c =78 mm, static)
Fig.7  Variations of potential (a) and current density (b) with pipeline diameter in galvanic corrosion process
Fig.8  Coupling potential distribution of seawater pipeline at 0 m/s (a), 1 m/s (b) and 3 m/s (c) seawater velocities
Fig.9  Comparison of variations of galvanic corrosion current density of seawater pipeline with axial distance in static/dynamic seawater conditions
[1] Li L, Sun J K, Meng X J.Application state and prospects for titanium alloys[J]. Titanium Ind. Prog., 2004, (5): 19(李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景[J]. 钛工业进展, 2004, (5): 19)
[2] Yang Y L, Su H B, Guo D Z, et al.Research progress in titanium alloys for naval ships in China[J]. Chin. J. Nonffrous Met., 2010, 20(Suppl.): S1002(杨英丽, 苏航标, 郭荻子等. 我国舰船钛合金的研究进展[J]. 中国有色金属学报, 2010, 20(增刊): S1002)
[3] De Assis S L, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques[J]. Electrochim. Acta, 2006, 51: 1815
[4] Kuphasuk C, Oshida Y, Andres C J, et al.Electrochemical corrosion of titanium and titanium-based alloys[J]. J. Prosthet. Dent., 2001, 85: 195
[5] Fu Y Y, Song Y Q, Hui S X, et al.Research and application of typical aerospace titanium alloys[J]. Chin. J. Rare Met., 2006, 30: 850(付艳艳, 宋月清, 惠松骁等. 航空用钛合金的研究与应用进展[J]. 稀有金属, 2006, 30: 850)
[6] Xu L Y, Cheng Y F.Experimental and numerical studies of effectiveness of cathodic protection at corrosion defects on pipelines[J]. Corros. Sci., 2014, 78: 162
[7] Wang C L, Wu J H, Li Q F.Recent advances and prospect of galvanic corrosion in marine environment[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 416(王春丽, 吴建华, 李庆芬. 海洋环境电偶腐蚀研究现状与展望[J]. 中国腐蚀与防护学报, 2010, 30: 416)
[8] Melchers R E, Wells T.Models for the anaerobic phases of marine immersion corrosion[J]. Corros. Sci., 2006, 48: 1791
[9] Diaz E S, Adey R.Optimising the location of anodes in cathodic protection systems to smooth potential distribution[J]. Adv. Eng. Softw., 2005, 36: 591
[10] Lee J M.Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte[J]. Electrochim. Acta, 2006, 51: 3256
[11] Mandel M, Krüger L.FE-simulation of galvanic corrosion susceptibility of two rivet joints verified by immersion tests[J]. Mater. Today, 2015, 2(Suppl.): S197
[12] Murer N, Oltra R, Vuillemin B, et al.Numerical modelling of the galvanic coupling in aluminium alloys: A discussion on the application of local probe techniques[J]. Corros. Sci., 2010, 52: 130
[13] Jia J X, Song G, Atrens A.Experimental measurement and computer simulation of galvanic corrosion of magnesium coupled to steel[J]. Adv. Eng. Mater., 2007, 9: 65
[14] Zamani N G.Boundary element simulation of the cathodic protection system in a prototype ship[J]. Appl. Math. Comput., 1988, 26: 119
[15] Miyasaka M, Takayama H, Amaya K, et al.Development of boundary element analysis technique for corrosion protection design[J]. Zairyo-to-Kankyo, 1998, 47: 156
[16] Liu G C, Sun W, Wang L, et al.Modeling cathodic shielding of sacrificial anode cathodic protection systems in seawater[J]. Mater. Corros., 2013, 64: 472
[17] Deshpande K B.Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063) in brine solution[J]. Corros. Sci., 2010, 52: 3514
[18] Mouanga M, Puiggali M, Tribollet B, et al.Galvanic corrosion between zinc and carbon steel investigated by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2013, 88: 6
[19] Song G L, Johannesson B, Hapugoda S, et al.Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc[J]. Corros. Sci., 2004, 46: 955
[20] Thébault F, Vuillemin B, Oltra R, et al.Reliability of numerical models for simulating galvanic corrosion processes[J]. Electrochim. Acta, 2012, 82: 349
[21] Wang Z Y, Liu B S, Qiu J.Introduction to Engineering Electromagnetic [M]. Xi'an: Xi'an Jiaotong University Press, 2001(王仲奕, 刘补生, 邱捷. 《工程电磁场导论》习题详解 [M]. 西安: 西安交通大学出版社, 2001)
[22] Guo Y.Numerical simulation and optimization of cathodic protection for ship and ocean structure [D]. Harbin: Harbin Engineering University, 2013(郭宇. 船舶与海洋结构物阴极保护电位数值仿真与优化设计[D]. 哈尔滨: 哈尔滨工程大学, 2013)
[1] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[2] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[3] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[4] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[5] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[6] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[7] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[8] Jiulong SONG, Wenge CHEN, Nannan LEI. Passivation of T2 Cu and QCr0.5 Cu-alloy with Chromate-free Solutions of Molybdate Compound[J]. 中国腐蚀与防护学报, 2018, 38(2): 210-218.
[9] Yanjie LIU,Zhenyao WANG,Binbin WANG,Yan CAO,Yang HUO,Wei KE. Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[10] Xin ZHAO,Yulong HU,Fu DONG,Xiaodong ZHANG,Zhiqiao WANG. Effect of Moistened Electrical Insulation on Galvanic Corrosion Behavior of Dissimilar Metals[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[11] Mumeng WEI,Bojun YANG,Yangyang LIU,Xiaoping WANG,Jinghua YAO,Lingqing GAO. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[12] Qiang WEI,Moucheng LI,Jianian SHEN. Galvanic Corrosion Behavior of Two Stainless Steels in Simulated Muffler Environments[J]. 中国腐蚀与防护学报, 2015, 35(3): 233-238.
[13] CHENG Xudong, SUN Lianfang, CAO Zhifeng, ZHU Xingji, ZHAO Lixin. Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[14] ZHAO Xiaohong, GUO Quanzhong, DU Keqin, GUO Xinghua, WANG Yong. Galvanic Corrosion Behavior of Couples of Hot Rolled Steel SS400 and Cold Rolled Steel ST12 with Two Coatings[J]. 中国腐蚀与防护学报, 2015, 35(1): 86-90.
[15] ZHOU Tingting, YUAN Chengqing, CAO Pan, WANG Xuejun, DONG Conglin. Numerical Simulation Analysis of Fluid Erosion Corrosion of Injection Nozzle for Diesel Engine[J]. 中国腐蚀与防护学报, 2014, 34(6): 574-580.
No Suggested Reading articles found!