Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 93-100    DOI: 10.11902/1005.4537.2016.013
  研究报告 本期目录 | 过刊浏览 |
含铬耐候钢在模拟海洋大气环境中的腐蚀行为
张飘飘,杨忠民(),陈颖,王慧敏
钢铁研究总院工程用钢所 北京 100081
Corrosion Behavior of Cr Bearing Weathering Steel in Simulated Marine Atmosphere
Piaopiao ZHANG,Zhongmin YANG(),Ying CHEN,Huimin WANG
Structural Steel Institute, Central Iron and Steel Research Institute, Beijing 100081, China
全文: PDF(7750 KB)   HTML
摘要: 

设计了1Cr-0.5Al-0.3Mo,5Cr-0.4Ni-0.3Cu和10Cr-0.3Ni 3种不同成分的实验钢,以20MnSi钢为对比钢种,采用周期浸润加速腐蚀实验、电化学测试方法,结合SEM和XRD等手段研究了实验钢种在模拟海洋大气环境中的腐蚀行为。结果表明:实验钢的腐蚀速率随Cr含量增加而降低,1Cr钢和5Cr钢锈层为双层结构,内锈层为富铬层与贫铬层交替带状结构,10Cr钢表面出现钝化现象;随着腐蚀时间延长,5Cr钢腐蚀率先增加后趋平稳,10Cr钢腐蚀率一直稳定在较低水平,20MnSi钢腐蚀率降低;Cr可提高基体自腐蚀电位和电荷传递电阻,同时增大锈层电阻。

关键词 耐候钢Cr含量耐蚀性海洋大气环境    
Abstract

Three different low alloy steels 1Cr-0.5Al-0.3Mo, 5Cr-0.4Ni-0.3Cu and 10Cr-0.3Ni were designed, then taking steel 20MnSi as a reference, their corrosion behavior was comparatively investigated in simulated marine atmosphere by means of periodic immersion accelerated corrosion test and electrochemical test, as well as XRD, SEM and EDS etc. In addition, electrochemical performance of the formed rust layer was assessed. The results showed that the corrosion rate of the test steels was decreased with the increasing Cr content, the formed rusts of the steels with 1% and 5%Cr composed of two layers with an inner layer of alternating band-like structure with Cr enriched sub-layers and Cr depleted sub-layers. While the steel with 10%Cr was passivated during the test. Besides, with the extending corrosion time, the corrosion rate of the steel with 5%Cr firstly increased and then stabilized, but it kept very low level for the steel with 10%Cr, and it decreased for the steel 20MnSi. Cr enhanced the free-corrosion potential and charge transfer resistance of the steels, thereby improved the compactness of the formed rusts.

Key wordsweathering steel    chromium content    corrosion resistance    marine atmospheric environment
收稿日期: 2016-01-13     
基金资助:国家高技术研究发展计划 (2015AA03A502)

引用本文:

张飘飘,杨忠民,陈颖,王慧敏. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 93-100.
Piaopiao ZHANG, Zhongmin YANG, Ying CHEN, Huimin WANG. Corrosion Behavior of Cr Bearing Weathering Steel in Simulated Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 93-100.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.013      或      https://www.jcscp.org/CN/Y2017/V37/I2/93

Steel C Si Mn P S Cr Al Ni Cu Mo Fe
1R 0.109 0.404 0.553 0.0064 0.0045 1.011 0.513 0.019 0.37 0.3365 Bal.
2R 0.101 0.177 0.666 0.0057 0.0040 5.312 <0.01 0.396 0.337 <0.005 Bal.
3R 0.095 0.330 1.240 0.0080 0.0070 10.780 <0.01 0.340 <0.01 <0.005 Bal.
20MnSi 0.240 0.400 1.330 0.032 0.026 0.019 --- 0.012 0.021 --- Bal.
表1  实验用钢的化学成分
图1  4种实验钢周浸72 h的腐蚀速率
图2  实验钢周浸216 h的腐蚀速率
图3  4种钢周浸72 h后的表面宏观形貌
图4  4种钢周浸72 h后试样表面微观形貌
图5  4种实验钢周浸72 h后横截面锈层的SEM像
图6  1R和2R实验钢横截面形貌及锈层元素分布
图7  3种实验钢周浸72 h后锈层的XRD谱和物相半定量分析结果
Steel Self-corrosion potential / V Current density mAcm-2 Polarization resistance / Ω
1R -0.382 6.536×10-3 661
2R -0.267 4.796×10-4 1416
3R -0.136 4.137×10-4 2.54×104
20MnSi -0.392 1.244×10-2 344
表2  裸钢试样电化学极化曲线和Nyquist阻抗谱拟合参数
图8  裸钢试样在0.5%NaCl溶液中的极化曲线和Nyquist阻抗谱
图9  4种钢周浸72 h后的带锈试样极化曲线
图10  周浸72 h的带锈试样在0.5%NaCl溶液中的Nyquist阻抗谱
图11  周浸72 h的带锈试样在0.5%NaCl溶液中的等效电路图
[1] Liang C F, Hou W T.Atmospheric corrosion of carbon steels and low alloy steels[J]. Corros. Sci. Prot. Technol., 1995, 7: 183
[1] (梁彩凤, 侯文泰. 碳钢及低合金钢8年大气暴露腐蚀研究[J]. 腐蚀科学与防护技术, 1995, 7: 183)
[2] Ke W.Current investigation into the corrosion cost in China[J]. Total Corros. Control, 2003, 17: 1
[2] (柯伟. 中国工业与自然环境腐蚀调查[J]. 全面腐蚀控制, 2003, 17: 1)
[3] Kihira H, Tanaka M, Yasunami H, et al.3% Ni-advanced weathering steel and its applicability assessing method [R]. Nippon Steel Technical Report, 2004, 90: 33
[4] Yamashita M, Miyuki H, Matsuda Y, et al.The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J]. Corros. Sci., 1994, 36: 283
[5] Iwao M.Translated by Jin Y K. Low-alloy Corrosion Resistance Steels-A History of Development, Application and Research [M]. Beijing: Metallurgical Industry Press, 2004
[5] (松岛岩著, 靳裕康译. 低合金耐蚀钢——开发、发展及研究 [M]. 北京: 冶金工业出版社, 2004)
[6] Qian Y H, Ma C H, Niu D, et al.Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels[J]. Corros. Sci., 2013, 74: 424
[7] Cheng Y F, Bullerwell J, Steward F R.Electrochemical investigation of the corrosion behavior of chromium-modified carbon steels in water[J]. Electrochim. Acta, 2003, 48: 1521
[8] Yang J H, Liu Q Y, Wang X D, et al.The progress of investigation on weathering steel and its rust layer[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 367
[8] (杨景红, 刘清友, 王向东等. 耐候钢及其腐蚀产物的研究概况[J]. 中国腐蚀与防护学报, 2007, 27: 367)
[9] Wang B.Effects and mechanism of Mn, Cr and V-N alloying in low carbon weathering steel [D]. Shenyang: Northeastern University, 2008
[9] (王博. 锰、铬及钒氮合金化在低碳耐候钢中的作用机理 [D]. 沈阳: 东北大学, 2008)
[10] Huang G Q, Dai M A.Corrosion of chromium steels in seawater[J]. Corros. Sci. Prot. Technol., 2000, 12: 315
[10] (黄桂桥, 戴明安. 含铬低合金钢在海水中的腐蚀研究[J]. 腐蚀科学与防护技术, 2000, 12: 315)
[11] Huang G Q.Effect of chromium element on corrosion resistance of steels in seawater[J]. Corros. Sci. Prot. Technol., 2000, 12: 86
[11] (黄桂桥. Cr对钢耐海水腐蚀性的影响[J]. 腐蚀科学与防护技术, 2000, 12: 86)
[12] Yang D S.The rust layer analysis of chromium seawater corrosion resistant steel[J]. Res. Iron Steel, 1989, 17(4): 55
[12] (杨德仕. 含铬耐海水腐蚀钢锈层分析[J]. 钢铁研究, 1989, 17(4): 55)
[13] Zhang P P, Yang Z M, Chen Y.The corrosion behavior of new Cr-Ni-Cu low alloy seawater corrosion resistant steel [A]. The seventh HSLA International Conference[C]. Hangzhou, 2015
[14] Yamashita M, Nagano H, Misawa T, et al.Structure of protective rust layers formed on weathering steels by long-term exposure in the industrial atmospheres of Japan and North America[J]. ISIJ Int., 1998, 38: 285
[15] Yamashita M, Miyuki H, Nagano H, et al.Compositional gradient and ion selectivity of Cr-substituted fine goethite as the final protective rust layer on weathering steel[J]. Tetsu-to-Hagane, 1997, 83: 448
[16] Liu S, Zhao X, Chen C W, et al.Corrosion behavior of pipeline steel X65 in oilfield[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 394
[16] (刘栓, 赵霞, 陈长伟等. 油田输油管线钢X65的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35: 394)
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[11] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[12] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[13] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[14] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[15] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.