Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (5): 353-359    DOI: 1005-4537(2009)05-0353-07
技术报告 Current Issue | Archive | Adv Search |
EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X70 PIPELINE STEEL IN SIMULATED KU'ERLE SOIL SOLUTION
ZHANG Liang; LI Xiaogang; DU Cuiwei; LIANG Ping
Corrosion and Protection Center; School of Materials Science and Engineering; University of Science and Technology Beijing;Beijing 100083
Download:  PDF(3555KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Stress corrosion cracking (SCC) behavior of X70 pipeline steel in simulated Ku$^\prime$erle soil solution at different applied potentials was investigated using slow strain rate testing (SSRT). Morphology of X70 pipeline steel fracture surface at different applied potentials was observed by scanning electron microscope (SEM). The results showed that X70 pipeline steel was susceptible to SCC in simulated solutions. It was found that low potentials applied increased susceptibility to SCC at open circuit potential (OCP). The fracture mechanism followed anodic dissolution mechanism of SCC. The precipitation of hydrogen increased hydrogen diffusion into the metal, hence increased susceptibility to SCC under higher cathode potential in simulated solution. The fracture followed hydrogen induced cracking mechanism.

Key words:  X70 pipeline steel      stress corrosion cracking      simulated solution, potential     
Received:  06 December 2007     
ZTFLH: 

TG172.8

 
Corresponding Authors:  LI Xiaogang     E-mail:  lixiaogang99@263.net

Cite this article: 

ZHANG Liang LI Xiaogang DU Cuiwei LIANG Ping. EFFECT OF APPLIED POTENTIALS ON STRESS CORROSION CRACKING OF X70 PIPELINE STEEL IN SIMULATED KU'ERLE SOIL SOLUTION. J Chin Soc Corr Pro, 2009, 29(5): 353-359.

URL: 

https://www.jcscp.org/EN/1005-4537(2009)05-0353-07     OR     https://www.jcscp.org/EN/Y2009/V29/I5/353

[1] Albarran J L, Aguilar A, Martinez L, et al. Corrosion and cracking behavior in an API X-80 steel exposed to sour gas environment[J]. Corrosion, 2002, 58(9): 783-792
[2] Koh S U, Kim J S, Yang B Y, et al. Effect of line pipe steel microstructure on susceptibility to sulfide stress cracking [J]. Corrosion, 2004,60(3): 244-253
[3] Eadie R L, Szklarz K E, Sutherby R L. Corrosion fatigue and near-neutral pH stress corrosion cracking of pipeline steel and the effect of hydrogen sulfide [J]. Corrosion, 2005,61(2): 167-173
[4] Zhao M C, Yang K. Strengthening and improvement of sulfide stress cracking resistance in acicular ferrite pipeline steels by nano-sized carbonitrides [J]. Scr. Mater., 2005,52: 881-886
[5] Gu B, Luo J, Mao X. Hydrogen-facilitated anodic dissolution-type stress corrosion cracking of pipeline steels in near-neutral pH solution [J]. Corrosion, 1999, 55(1): 96-106
[6] Gonzalez-Rodriguez J G, Casales M, Salinas-Bravo V M, et al. Effect of microstructure on the stress corrosion cracking of X-80 pipeline steel in diluted sodium bicarbonate solutions [J]. Corrosion, 2002,58(7): 584-590
[7] Park J J, Pyun S I, Na K H, et al. Effect of passivity of the oxide film in low-pH stress corrosion cracking of API 5L X-65 pipeline steel in bicarbonate solution [J]. Corrosion,2002, 58(4): 329-336
[8] Parkins R N, Beavers J A. Some effects of strain rate on the transgranular stress corrosion cracking of ferritic steels in dilute near-neutral-pH solutions [J]. Corrosion,2003, 59(3): 258-271
[9] Manfredi C, Otegui J L. Failures by SCC in buried pipelines [J]. Eng. Failure Anal., 2002, 9: 495-509
[10] Wang J Q, Atrens A. SCC initiation for X65 pipeline steel in the “high” pH carbonate/bicarbonate solution [J]. Corros.Sci., 2003, 45(10): 2199-2217
[11] Chu R, Chen W, Wang S H, et al. Microstructure dependence of stress corrosion craking initiation in X65 pipeline steel exposed to a near-neutral pH soil environment [J]. Corrosion, 2004, 60(3): 275-282
[12] Lu B T, Luo J L. Relationship between yield strength and near-neutral pH stress corrosion cracking resistance of pipeline steels-an effect of microstructure[J]. Corrosion, 2006, 62(2): 129-138
[13] Chen W, King F, Vokes E. Characteristics of near-neutral-pH stress corrosion cracks in an X-65 pipeline [J]. Corrosion, 2002, 58(3): 267-277
[14] Yang W. Some new advances in research of SCC of buried oil and gas pipelines [J]. Corros. Prot., 2003, 24(11): 461-467
     (杨武. 埋地油气管线应力腐蚀破裂研究的一些新进展 [J]. 腐蚀与防护, 2003, 24(11): 461-467)
[15] Fang B Y, Wang J Q, Zhu Z Y, et al. The stress corrosion cracking of buried pipelines in near-neutral-pH and high-pH solutions [J]. Acta Metall. Sin., 2001, 37(5): 452-458
     (方丙炎, 王俭秋, 朱自勇等. 埋地管道在近中性pH和高pH环境中的应力腐蚀破裂 [J]. 金属学报, 2001, 37(5): 453-458)
[16] Jin M H, Meng X L, Huang H T, et al. Corrosion mechanism of carbon steel in four types of soil [J]. J. HuaZhong Univ. Sci.Technol. (Nat. Sci.), 2002, 30(7): 104-107
     (金名惠, 孟厦兰, 黄辉桃等. 碳钢在我国四种土壤中腐蚀机理的研究 [J].华中科技大学学报(自然科学版), 2002, 30(7): 104-107)
[17] Rebak R B, Xia Z, Safruddin R, et al. Effect of solution composition and electrochemical potential on stress corrosion cracking of X-52 pipeline steel [J]. Corrosion,1996, 52(5): 396-405

[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[6] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[8] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[9] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[10] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[11] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[12] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[14] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[15] Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
No Suggested Reading articles found!