|
|
|
| Corrosion Behavior of 40Cr Steel in 3.5%NaCl Solution Under Combined Effect of Stress and Ultraviolet Illumination |
QIN Pengfei1, CUI Yu2, LIU Rui1, JU Pengfei3( ), WANG Fuhui1, LIU Li1( ) |
1.State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China 2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Shanghai Aerospace Equipment Manufacture, Shanghai 200245, China |
|
Cite this article:
QIN Pengfei, CUI Yu, LIU Rui, JU Pengfei, WANG Fuhui, LIU Li. Corrosion Behavior of 40Cr Steel in 3.5%NaCl Solution Under Combined Effect of Stress and Ultraviolet Illumination. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 233-240.
|
|
|
Abstract The corrosion behavior of 40Cr steel in 3.5%NaCl solution under the combined effect of plastic tensile stress and ultraviolet (UV) illumination was investigated. The results demonstrate that UV illumination accelerates the corrosion of 40Cr steel, which is primarily attributed to the lower charge-transfer resistance and higher flat-band potential of the rust layer formed on the surface of the steel under illumination. Furthermore, the formation of a honeycomb inner rust layer under UV illumination facilitates the accumulation of NaCl within the rust layer. The rust layer formed on the surface of 40Cr steel under plastic tensile stress was more porous, exhibiting a higher photoelectric response and lower charge transfer resistance. These factors contributed to the accelerated anodic dissolution of 40Cr steel under the combined effect of plastic tensile stress and UV illumination.
|
|
Received: 24 March 2025
32134.14.1005.4537.2025.096
|
|
|
| Fund: National Natural Science Foundation of China(U20B2026) |
| [1] |
Zeng D Z, Li H, Tian G, et al. Fatigue behavior of high-strength steel S135 under coupling multi-factor in complex environments [J]. Mater. Sci. Eng., 2018, 724A: 385
|
| [2] |
Qin P F, Ma H Y, Cui Y, et al. The corrosion behavior of 316 stainless steel under the cooperative effect of plastic stress and UV illumination in 3.5wt%NaCl solution [J]. Corros. Sci., 2023, 223: 111466
doi: 10.1016/j.corsci.2023.111466
|
| [3] |
Xia L, Wang K, Xu W Q, et al. Synergistic acceleration effects of ultraviolet and salt spray on the degradation and failure of electromagnetic wave-absorbing coatings [J]. Prog. Org. Coat., 2023, 182: 107686
|
| [4] |
Du D H, Chen K, Lu H, et al. Effects of chloride and oxygen on stress corrosion cracking of cold worked 316/316L austenitic stainless steel in high temperature water [J]. Corros. Sci., 2016, 110: 134
doi: 10.1016/j.corsci.2016.04.035
|
| [5] |
Lee S, Staehle R W. Adsorption of water on copper, nickel, and iron [J]. Corrosion, 1997, 53: 33
doi: 10.5006/1.3280431
|
| [6] |
Dante J F, Kelly R G. The evolution of the adsorbed solution layer during atmospheric corrosion and its effects on the corrosion rate of copper [J]. J. Electrochem. Soc., 1993, 140: 1890
doi: 10.1149/1.2220734
|
| [7] |
Mansfeld F, Kenkel J V. Electrochemical measurements of time-of-wetness and atmospheric corrosion rates [J]. Corrosion, 1977, 33: 13
doi: 10.5006/0010-9312-33.1.13
|
| [8] |
Cole I S, Ganther W D, Sinclair J D, et al. A study of the wetting of metal surfaces in order to understand the processes controlling atmospheric corrosion [J]. J. Electrochem. Soc., 2004, 151: B627
doi: 10.1149/1.1809596
|
| [9] |
Wu J X, Wu Y Q, Wang J L. Comparative study on corrosion behavior of Cu and Sn under UV light illumination in chloride-containing borate buffer solution [J]. Corros. Sci., 2021, 186: 109471
doi: 10.1016/j.corsci.2021.109471
|
| [10] |
Lin H, Frankel G S. Atmospheric corrosion of Cu during constant deposition of NaCl [J]. J. Electrochem. Soc., 2013, 160: C336
doi: 10.1149/2.037308jes
|
| [11] |
Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
|
|
万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
|
| [12] |
Schmuki P, Böhni H. Illumination effects on the stability of the passive film on iron [J]. Electrochim. Acta, 1995, 40: 775
doi: 10.1016/0013-4686(94)00341-W
|
| [13] |
Wilson H, Sunde S, Erbe A. Hole annihilation vs. induced convection: breakdown of different contributions to the photocorrosion mechanism of oxide-covered iron [J]. Corros. Sci., 2021, 185: 109426
doi: 10.1016/j.corsci.2021.109426
|
| [14] |
Amin M A. Uniform and pitting corrosion events induced by SCN- anions on Al alloys surfaces and the effect of UV light [J]. Electrochim. Acta, 2011, 56: 2518
doi: 10.1016/j.electacta.2010.12.045
|
| [15] |
Luo H, Li X G, Dong C F, et al. Influence of uv light on passive behavior of the 304 stainless steel in acid solution [J]. J. Phys. Chem. Solids, 2013, 74: 691
doi: 10.1016/j.jpcs.2013.01.005
|
| [16] |
Breslin C B, Macdonald D D, Sikora E, et al. Photo-inhibition of pitting corrosion on types 304 and 316 stainless steels in chloride-containing solutions [J]. Electrochim. Acta, 1997, 42: 137
doi: 10.1016/0013-4686(96)00178-8
|
| [17] |
Breslin C B, Macdonald D D, Sikora J, et al. Influence of uv light on the passive behaviour of SS316-effect of prior illumination [J]. Electrochim. Acta, 1997, 42: 127
doi: 10.1016/0013-4686(96)00177-6
|
| [18] |
Song S H, Chen Z Y. Effect of UV illumination on the NaCl-induced atmospheric corrosion of pure zinc [J]. J. Electrochem. Soc., 2014, 161: C288
doi: 10.1149/2.015406jes
|
| [19] |
Li H T, Chen Z Y, Liu X C, et al. Study on the mechanism of the photoelectrochemical effect on the initial NaCl-induced atmospheric corrosion process of pure copper exposed in humidified pure air [J]. J. Electrochem. Soc., 2018, 165: C608
doi: 10.1149/2.0771810jes
|
| [20] |
Song L Y, Ma X M, Chen Z Y, et al. The role of UV illumination on the initial atmospheric corrosion of 09CuPCrNi weathering steel in the presence of NaCl particles [J]. Corros. Sci., 2014, 87: 427
doi: 10.1016/j.corsci.2014.07.013
|
| [21] |
Song L Y, Chen Z Y, Hou B R. The role of the photovoltaic effect of γ-FeOOH and β-FeOOH on the corrosion of 09CuPCrNi weathering steel under visible light [J]. Corros. Sci., 2015, 93: 191
doi: 10.1016/j.corsci.2015.01.019
|
| [22] |
Fatimah I, Purwiandono G, Ningrum H S, et al. Physicochemical and photocatalytic activity of needle-like γ-FeOOH/Halloysite [J]. Inorg. Chem. Commun., 2023, 155: 111033
doi: 10.1016/j.inoche.2023.111033
|
| [23] |
Song L Y, Chen Z Y. Effect of γ-FeOOH and γ-Fe2O3 on the corrosion of Q235 carbon steel under visible light [J]. J. Electrochem. Soc., 2015, 162: C79
doi: 10.1149/2.0301503jes
|
| [24] |
Wu H Y, Luo Y Z, Zhou G G. The evolution of the corrosion mechanism of structural steel exposed to the urban industrial atmosphere for seven years [J]. Appl. Sci., 2023, 13: 4500
doi: 10.3390/app13074500
|
| [25] |
Guedes I C, Aoki I V, Carmezim M J, et al. The influence of copper and chromium on the semiconducting behaviour of passive films formed on weathering steels [J]. Thin Solid Films, 2006, 515: 2167
doi: 10.1016/j.tsf.2006.05.011
|
| [26] |
Zhang T Y, Xu X X, Li Y, et al. The function of Cr on the rust formed on weathering steel performed in a simulated tropical marine atmosphere environment [J]. Constr. Build. Mater, 2021, 277: 122298
doi: 10.1016/j.conbuildmat.2021.122298
|
| [27] |
Deng S H, Lu H, Li D Y. Influence of UV light irradiation on the corrosion behavior of electrodeposited Ni and Cu nanocrystalline foils [J]. Sci. Rep., 2020, 10: 3049
doi: 10.1038/s41598-020-59420-6
|
| [28] |
Liu R, Song Y S, Cui Y, et al. Corrosion of high-strength steel in 3.5%NaCl solution under hydrostatic pressure: understanding electrochemical corrosion with tensile stress coupling [J]. Corros. Sci., 2023, 219: 111204
doi: 10.1016/j.corsci.2023.111204
|
| [29] |
Song Y S, Liu R, Cui Y, et al. Corrosion of high-strength steel in 3.5%NaCl solution under hydrostatic pressure: Initial corrosion with tensile stress coupling [J]. Corros. Sci., 2023, 219: 111229
doi: 10.1016/j.corsci.2023.111229
|
| [30] |
Gao J X, Cao H, Kuang W J, et al. Research progress on irradiation assisted stress corrosion cracking behavior and mechanism of austenitic steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 835
|
|
高俊宣, 曹 晗, 匡文军 等. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 835
doi: 10.11902/1005.4537.2023.287
|
| [31] |
Zhao T L, Wang H B, Luo Q, et al. Rusting behavior of a deformed 450 MPa-grade weathering steel in 5wt.%NaCl salt spray [J]. J. Mater. Res. Technol., 2022, 21: 3181
doi: 10.1016/j.jmrt.2022.10.106
|
| [32] |
ASTM. Standard practice for making and using U-bend stress-corrosion test specimens [S]. West Conshohocken, PA: ASTM, 2022
|
| [33] |
Zhang X, Yang S W, Zhang W H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles [J]. Corros. Sci., 2014, 82: 165
doi: 10.1016/j.corsci.2014.01.016
|
| [34] |
Ma Y T, Li Y, Wang F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corros. Sci., 2000, 52: 1796
doi: 10.1016/j.corsci.2010.01.022
|
| [35] |
Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel [J]. Corros. Sci., 2008, 50: 1872
doi: 10.1016/j.corsci.2008.03.008
|
| [36] |
Lu X Y, Liu L, Ge J W, et al. Morphology controlled synthesis of Co(OH)2/TiO2 p-n heterojunction photoelectrodes for efficient photocathodic protection of 304 stainless steel [J]. Appl. Surf. Sci., 2021, 537: 148002
doi: 10.1016/j.apsusc.2020.148002
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|