Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 241-251    DOI: 10.11902/1005.4537.2025.101
Current Issue | Archive | Adv Search |
Anti-corrosion Behavior and Electrochemical Performance of Zinc Electrodes in Citrulline/ZnSO4 Electrolyte
LI Caixia, ZHANG Yunhe, LIU Li(), DONG Lijin, HUANG Yun()
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
Cite this article: 

LI Caixia, ZHANG Yunhe, LIU Li, DONG Lijin, HUANG Yun. Anti-corrosion Behavior and Electrochemical Performance of Zinc Electrodes in Citrulline/ZnSO4 Electrolyte. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 241-251.

Download:  HTML  PDF(13192KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zwitterionic citrulline (Cit) was introduced as an additive into a 2 mol/L ZnSO4 electrolyte. Cit molecules preferentially adsorb onto the Zn2+ surface, displacing reactive water molecules within the Zn2+ solvation sheath, thereby optimizing the Zn2+ solvation structure. Simultaneously, Cit coordinates with Zn2+ to form a dynamic electrostatic shielding layer, which suppresses the uncontrolled growth of Zn dendrites caused by localized high current density. The synergistic effect of Cit not only effectively reduces and suppresses the hydrogen evolution reaction (HER) rate but also significantly enhances the electrochemical performance of aqueous zinc-ion batteries (ZIBs). Test results show that batteries assembled with Cit/ZnSO4 electrolyte exhibit superior electrochemical properties compared to those using pristine 2 mol/L ZnSO4. Specifically, the Zn||Cu asymmetric cell with Cit/ZnSO4 electrolyte achieves a cycle life exceeding 500 cycles at 0.5 mA·cm-2 and 0.5 mAh·cm-2. The Zn||Zn symmetric cell maintains stable operation for over 5,000 hours at 1.0 mA·cm-2 and 1.0 mAh·cm-2, and even under harsh conditions of 5.0 mA·cm-2 and 5.0 mAh·cm-2, it sustains 2,500 h of cycling. Furthermore, the Zn||V2O5 full cell retains high-capacity retention after 1,000 cycles by 1.0 A·g-1. This work provides novel insights into the development of efficient electrolyte additives and highlights the practical potential of Cit for high-performance ZIBs.

Key words:  aqueous zinc-ion batteries (ZIBs)      zwitterionic citrulline (Cit)      solvation structure      deposition morphology      HER reaction     
Received:  26 March 2025      32134.14.1005.4537.2025.101
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(52170140);Key R&D Project of Sichuan Province(2025YFHZ0057)

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.101     OR     https://www.jcscp.org/EN/Y2026/V46/I1/241

Fig.1  FTIR spectrum (a) and electrostatic potential diagram (b) of Cit
Fig.2  Electrochemical performances of Zn||Zn cells at 4.0 and 4.0 mA·cm-2 (a1-a4), rate performance at different current densities (b), and cyclic performance at 0.5 and 1.0 mA·cm-2 after the rate performance test (c)
Fig.3  HOMO-LUMO orbital energy levels of Cit and H2O (a) and binding energies of Zn2+ with Cit and H2O (b)
Fig.4  NMR spectra (a), FTIR spectra (b), ionic conductivities (c) and contact angles (d) of Cit/ZnSO4 electrolyte and 2 mol/L ZnSO4 electrolyte
Fig.5  LSV curves (a, b), pH values (c) and Tafel curves (d) of Zn||Ti cells
Fig.6  SEM images of Zn anodes of Zn||Zn cells after 120 h cycling at 1.0 mA·cm-2 with 1.0 mAh·cm-2 (a, b), XRD patterns (c), and CA curves (d)
Fig.7  In situ optical microscopy images showing the deposition of Cit/ZnSO4 (a) and ZnSO4 (b) at 5.0 mA·cm-2
Fig.8  Low-magnification (a, b) and high-magnification (c, d) SEM images of ZnSO4 (a, c) and Cit/ZnSO4 (b, d) electroplating at 10.0 mA·cm-2
Fig.9  Voltage vs. capacity curves (a, b), voltage vs. cycle number curves (c) and coulombic efficiency plots (d) of Zn||Cu cells
Fig.10  Cycling performances of Zn||Zn cells at 5.0 mA·cm-2 and 5.0 mAh·cm-2 (a, b) and at 1.0 mA·cm-2 and 1.0 mAh·cm-2 (c), and cycle life comparison plot (d)
ElectrolyteCurrent density / mAh·cm-2Capacity / mAh·cm-2Cycle time / hRef.
0.1 mol/L ABSA11500[33]
4 mol/L GPC141450[34]
L-CN/ZnSO48.858.85≈1000[35]
[EMIM]OTF/ZnSO455500[36]
Na4EDTA additive22450[37]
ZHA electrolyte111300[38]
CHAE11580[39]
ZnSO4 + Arg104≈900[40]
Zn(BF4)2-DMC-EC33480[23]
ZnSO4-NH4OH55250[41]
2 mol/L Zn(OTf)210.25800[42]
ZnSO4 with GQDs20.21800[43]
ZnSO4 with 20 DMSO112100[44]
Zn(BF4)2-EG-MeOH211600[45]
Cit/ZnSO4115000This work
552500
Table 1  Comparison of cycle lifes of Zn||Zn cells
Fig.11  Self-discharge curves of Zn||V2O5 full cells with Cit/ZnSO4 electrolyte (a) and 2 mol/L ZnSO4 electrolyte (b)
Fig.12  CV curves (a), rate performance (b), and long-cycle performance (c) of Zn||V2O5 full cells
[1] Qin R Z, Wang Y T, Yao L, et al. Progress in interface structure and modification of zinc anode for aqueous batteries [J]. Nano Energy, 2022, 98: 107333
doi: 10.1016/j.nanoen.2022.107333
[2] Liang Y L, Dong H, Aurbach D, et al. Current status and future directions of multivalent metal-ion batteries [J]. Nat. Energy, 2020, 5: 646
doi: 10.1038/s41560-020-0655-0
[3] Yu R, Zhang H L, Guo B L. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering [J]. Nano-Micro Lett., 2022, 14: 1
[4] Yue J S, Chen S, Yang J J, et al. Multi-ion engineering strategies toward high performance aqueous zinc-based batteries [J]. Adv. Mater., 2024, 36: 2304040
doi: 10.1002/adma.v36.2
[5] Liu C X, Xie X S, Lu B G, et al. Electrolyte strategies toward better zinc-ion batteries [J]. ACS Energy Lett., 2021, 6: 1015
doi: 10.1021/acsenergylett.0c02684
[6] Pan H L, Shao Y Y, Yan P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions [J]. Nat. Energy, 2016, 1: 16039
doi: 10.1038/nenergy.2016.39
[7] Huang S W, Hou L, Li T Y, et al. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries [J]. Adv. Mater., 2022, 34: 2110140
doi: 10.1002/adma.v34.14
[8] Geng L S, Meng J S, Wang X P, et al. Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries [J]. Angew. Chem. Int. Ed., 2022, 61: e202206717
doi: 10.1002/anie.v61.31
[9] Song M, Tan H, Chao D L, et al. Recent advances in Zn‐Ion batteries [J]. Adv. Funct. Mater., 2018, 28: 1802564
doi: 10.1002/adfm.v28.41
[10] Zheng W, Qu D Y, Sun Z H, et al. Research progress of zinc ion batteries in zinc metal electrodes and electrolytes [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 548
郑 微, 曲冬阳, 孙中辉 等. 锌离子电池的锌金属负极和电解液的研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 548
[11] Zhang Y Z, Cao Z J, Liu S J, et al. Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes [J]. Adv. Energy Mater., 2022, 12: 2103979
doi: 10.1002/aenm.v12.13
[12] Zhou J H, Xie M, Wu F, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous Zinc-Ion Batteries [J]. Adv. Mater., 2021, 33: 2101649
doi: 10.1002/adma.v33.33
[13] Zhang H, Li S, Xu L Q, et al. High-yield carbon dots interlayer for ultra-stable zinc batteries [J]. Adv. Energy Mater., 2022, 12: 2200665
doi: 10.1002/aenm.v12.26
[14] Lu L L, Liu L J, Yao S L, et al. Degradation behavior of pure zinc and Zn-xLi alloy in artificial urine [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 765
陆黎立, 刘丽君, 姚生莲 等. Zn及锌锂合金在人工尿液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 765
doi: 10.11902/1005.4537.2020.205
[15] Zhou J H, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-Ion batteries [J]. Adv. Mater., 2022, 34: e2106897
[16] Xiao R, Cai Z, Zhan R M, et al. Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries [J]. Chem. Eng. J., 2021, 420: 129642
doi: 10.1016/j.cej.2021.129642
[17] Wang J D, Cai Z, Xiao R, et al. A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries [J]. ACS Appl. Mater. Interfaces, 2020, 12: 23028
doi: 10.1021/acsami.0c05661
[18] Li T C, Lim Y, Li X L, et al. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage (Adv. Energy Mater. 15/2022) [J]. Adv. Energy Mater., 2022, 12: 2270060
doi: 10.1002/aenm.v12.15
[19] Wu H T, Zhang T S, Li G F, et al. Corrosion inhibitor for Zn anode of neutral aqueous zinc ion batteries [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1089
吴浩天, 张天遂, 李广芳 等. 中性水系锌离子电池负极缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1089
doi: 10.11902/1005.4537.2023.361
[20] Cao J, Zhang D D, Zhang X Y, et al. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries [J]. Energy Environ. Sci., 2022, 15: 499
doi: 10.1039/D1EE03377H
[21] Wang J, Ning P D, Liu Q Q, et al. Corrosion behavior of galvanized steel in a simulated marine atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 578
王 瑾, 宁培栋, 刘倩倩 等. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理 [J]. 中国腐蚀与防护学报, 2023, 43: 578
[22] Dai Y H, Zhang C Y, Zhang W, et al. Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators [J]. Angew. Chem. Int. Ed., 2023, 62: e202301192
doi: 10.1002/anie.v62.18
[23] Wang N Z, Chen X, Wan H Z, et al. Zincophobic electrolyte achieves highly reversible zinc-ion batteries [J]. Adv. Funct. Mater., 2023, 33: 2300795
doi: 10.1002/adfm.v33.27
[24] Wang G Y, Zhang Q K, Zhang X Q, et al. Electrolyte additive for interfacial engineering of lithium and zinc metal anodes [J]. Adv. Energy Mater., 2025, 15: 2304557
doi: 10.1002/aenm.v15.2
[25] Zhang R X, Cui Y X, Liu L L, et al. A dual-functional rare earth halide additive for high-performance aqueous zinc ion batteries [J]. J. Power Sources, 2024, 602: 234351
doi: 10.1016/j.jpowsour.2024.234351
[26] Xin T, Zhou R K, Xu Q J, et al. 15-Crown-5 ether as efficient electrolyte additive for performance enhancement of aqueous Zn-ion batteries [J]. Chem. Eng. J., 2023, 452: 139572
doi: 10.1016/j.cej.2022.139572
[27] Zhao L, Zhang Y H, Li Y T, et al. A zwitterionic-type multifunctional electrolyte additive of trigonelline hydrochloride stabilizes zinc anodes for advanced aqueous zinc-ion batteries [J]. J. Energy Storage, 2024, 97: 112834
doi: 10.1016/j.est.2024.112834
[28] Xiao F Y, Wang X K, Sun K T, et al. Zincophilic armor: phytate ammonium as a multifunctional additive for enhanced performance in aqueous zinc-ion batteries [J]. Chem. Eng. J., 2024, 489: 151111
doi: 10.1016/j.cej.2024.151111
[29] Tu S B, Chen X, Zhao X X, et al. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries [J]. Adv. Mater., 2018, 30: 1804581
doi: 10.1002/adma.v30.45
[30] Singh G, Patyar P, Kaur T, et al. Volumetric behavior of glycine in aqueous succinic acid and sodium succinate buffer at different temperatures [J]. J. Mol. Liq., 2016, 222: 804
doi: 10.1016/j.molliq.2016.07.042
[31] Zhong Y, Cheng Z X, Zhang H W, et al. Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery [J]. Nano Energy, 2022, 98: 107220
doi: 10.1016/j.nanoen.2022.107220
[32] Ji H J, Han Z Q, Lin Y H, et al. Stabilizing zinc anode for high-performance aqueous zinc ion batteries via employing a novel inositol additive [J]. J. Alloy. Compd., 2022, 914: 165231
doi: 10.1016/j.jallcom.2022.165231
[33] Li X, Zhang W W, Yu J, et al. Self-assembled protection layer induced by bifunctional additive for reversible aqueous zinc metal battery [J]. Adv. Funct. Mater., 2024, 34: 2316474
doi: 10.1002/adfm.v34.32
[34] Lyu H D, Zhao S W, Liao C Y, et al. Electric double layer oriented eutectic additive design toward stable Zn anodes with a high depth of discharge [J]. Adv. Mater., 2024, 36: 2400976
doi: 10.1002/adma.v36.29
[35] Yu H M, Chen D P, Ni X Y, et al. Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries [J]. Energy Environ. Sci., 2023, 16: 2684
doi: 10.1039/D3EE00982C
[36] Weng J Q, Zhu W Q, Yu K, et al. Enhancing Zn-Metal anode stability: Key effects of electrolyte additives on ion-shield-like electrical double layer and stable solid electrolyte interphase [J]. Adv. Funct. Mater., 2024, 34: 2314347
doi: 10.1002/adfm.v34.18
[37] Zhang S J, Hao J N, Luo D, et al. Dual-function electrolyte additive for highly reversible Zn anode [J]. Adv. Energy Mater., 2021, 11: 2102010
doi: 10.1002/aenm.v11.37
[38] Zheng J J, Zhang B, Chen X, et al. Critical solvation structures arrested active molecules for reversible Zn electrochemistry [J]. Nano-Micro Lett., 2024, 16: 145
doi: 10.1007/s40820-024-01361-0 pmid: 38441811
[39] Olbasa B W, Huang C J, Fenta F W, et al. Highly reversible Zn metal anode stabilized by dense and anion-derived passivation layer obtained from concentrated hybrid aqueous electrolyte [J]. Adv. Funct. Mater., 2022, 32: 2103959
doi: 10.1002/adfm.v32.7
[40] Lu H T, Zhang X L, Luo M H, et al. Amino acid-induced interface charge engineering enables highly reversible Zn anode [J]. Adv. Funct. Mater., 2021, 31: 2103514
doi: 10.1002/adfm.v31.45
[41] Zhang Z H, He Z R, Wang N, et al. Regulating the water molecular in the solvation structure for stable zinc metal batteries [J]. Adv. Funct. Mater., 2023, 33: 2214648
doi: 10.1002/adfm.v33.27
[42] Yuan D, Zhao J, Ren H, et al. Anion texturing towards dendrite‐free Zn anode for aqueous rechargeable batteries [J]. Angew. Chem. Int. Ed., 2021, 60: 7213
doi: 10.1002/anie.202015488 pmid: 33381887
[43] Zhang H, Guo R T, Li S, et al. Graphene quantum dots enable dendrite-free zinc ion battery [J]. Nano Energy, 2022, 92: 106752
doi: 10.1016/j.nanoen.2021.106752
[44] Feng D D, Cao F Q, Hou L, et al. Immunizing aqueous Zn Batteries against dendrite formation and side reactions at various temperatures via electrolyte additives [J]. Small, 2021, 17: 2103195
doi: 10.1002/smll.v17.42
[45] Cui C J, Han D L, Lu H T, et al. Breaking consecutive hydrogen-bond network toward high-rate hydrous organic zinc batteries [J]. Adv. Energy Mater., 2023, 13: 2301466
doi: 10.1002/aenm.v13.31
[1] MA Xiao, XU Xuelei, TONG Hongtao, WANG Xin, ZHAO Mingyu, WANG Xuan, SHEN Jie, LIU Guangyi. Erosion-corrosion Characteristics of B10 Cu-Ni Alloy Seawater Control Valve in Flowing Seawater Conditions[J]. 中国腐蚀与防护学报, 2026, 46(1): 283-290.
[2] YUE Yuanguang, YIN Zhibiao, ZHANG Ziyue, JIANG Sheming, ZHANG Qifu. Development of an Atmospheric Corrosion Monitor and its Real-time Monitoring in Different Environmental Conditions[J]. 中国腐蚀与防护学报, 2026, 46(1): 308-314.
[3] ZHANG Zequn, LUO Xinjie, LIU Pengfei, DONG Kai, ZHUO Xianqin, WU Junsheng, ZHANG Bowei. Influence of TiC Particles on Microstructure and Corrosion Performance of Laser Powder Bed Fusion Al-Mg-Sc-Zr Alloy[J]. 中国腐蚀与防护学报, 2026, 46(1): 92-102.
[4] ZHANG Deping, YAN Lizhen, YU Yang, YANG Guangming, DAI Chunyu, MEGN Le, XU Bo, LIU Zhiyong. Fracture Failure Mechanism of N80 Tubing in Sophisticated CO2 Flooding Production Well Environment[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.
[5] SUN Xinlei, CAO Jingyi, YIN Wenchang, FANG Zhigang, WANG Feng, WANG Xingqi, YANG Yange. Failure Behavior of Vinyl Ester Composites in High Temperature and High Humidity Environments[J]. 中国腐蚀与防护学报, 2025, 45(6): 1679-1688.
[6] SUN Shibin, GAO Hao, CHANG Xueting, WANG Dongsheng. Failure Behavior of Fine-grained FH40 Marine Low-temperature Steel in Conditions of Coupling Effect of Seawater-sea Ice[J]. 中国腐蚀与防护学报, 2025, 45(6): 1659-1668.
[7] YANG Baoqi, YAN Maocheng, SHI Xianbo, GAO Bowen. SRB Induced Corrosion Behavior of a Novel Microbial Corrosion Resistant Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(6): 1755-1763.
[8] LI Yuqing, ZHANG Tiezhi, HUANG Xinglin, SUN Zhenmei, ZHANG Yi, YIN Yansheng. Effect of Marinilactibacillus Piezotolerans on Corrosion Behavior of 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
[9] LI Ke, LI Tianlei, CAO Xiaoyan, JIANG Liu, WANG Yaxi, XIAO Zeyu, ZHONG Xiankang. Corrosion Behavior of 316L Stainless Steel Welded Joints in S-H2S-containing Environments[J]. 中国腐蚀与防护学报, 2025, 45(6): 1725-1733.
[10] LI Weihua, LI Zhong, ZHANG Danni, XU Dake. Microbial-induced Mineralization for Inhibiting Metal Corrosion: Mechanism, Design Strategies and Prospects[J]. 中国腐蚀与防护学报, 2025, 45(6): 1459-1473.
[11] . The influence of Concrete counterweight layer on cathodic protection effect of nearshore submarine steel pipes[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[12] ZHAO Xinyu, LIU Enze, ZHANG Gong, ZHAO Yuan, NING Likui, XIN Xin, JIA Dan, LIU Weihua, TAN Zheng. Hot Corrosion Behavior of Brazed Joints of Single Crystal Ni-based DD10 Alloy Beneath Na2SO4 Deposit in Air at 850 and 900 ℃[J]. 中国腐蚀与防护学报, 2025, 45(5): 1361-1370.
[13] WANG Taotao, XUE Rongjie, MA Xiaowei, WAN Haofeng, WANG Dongpeng, LIU Zhenguang. Effect of Surface Roughness, Concentration and Temperature of NaOH Solution on Corrosion Behavior of a Zr-based Metallic Glass[J]. 中国腐蚀与防护学报, 2025, 45(5): 1253-1264.
[14] FENG Yuqin, GUO Tonghan, YU Weihan, WU Wei, ZHANG Daquan. Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[15] XIA Da-Hai, PAN Chengcheng, GUO Yujie, HU Wenbin, TRIBOLLET Bernard. Electrochemical Impedance Spectroscopy Analysis on Interface State and Corrosion Mechanism of 7050 Al-alloy Subjected to Cavitation Erosion in NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
No Suggested Reading articles found!