Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 1061-1069    DOI: 10.11902/1005.4537.2024.325
Current Issue | Archive | Adv Search |
Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment
ZHANG Guoqing1, YU Zhixia1, WANG Yuesong2, WANG Zhi1, JIN Zhengyu2, LIU Hongwei2()
1 Offshore Oil Engineering Co., Ltd., Tianjin 300461, China
2 School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
Cite this article: 

ZHANG Guoqing, YU Zhixia, WANG Yuesong, WANG Zhi, JIN Zhengyu, LIU Hongwei. Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1061-1069.

Download:  HTML  PDF(10324KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Maine Carbon Capture, Utilization and Storage (CCUS) is one of the effective methods to solve the problems caused by the excess emission of CO2. However, the pipelines face serious corrosion problems in the process of CO2 transport. Aiming at marine corrosion problems under supercritical CO2 conditions, this work investigated the corrosion behavior of A106 carbon steel with different water contents and temperature by mass loss, scanning electron microscope (SEM), X-ray diffractometer (XRD) and three-dimensional stereoscopic microscope. Results indicate that the corrosion rate of A106 steel increased with the increase of water content in CO2 environment at 10 MPa and 35 ℃. When the water content exceeded 2000 μL/L, the corrosion rate was significantly accelerated. A106 steel reached the maximum corrosion rate, i.e., 0.16 mm/a at the water content of 3000 μL/L. However, the localized corrosion rate of A106 steel was the highest with the value of 0.73 mm/a at the water content of 2000 μL/L. In the CO2 environment at 10 MPa, the corrosion rate of A106 steel decreased from 25 to 60 ℃ and then increased with the increase of temperature. At 60 ℃, the corrosion rate reached a minimum value, i.e., 0.025 mm/a. Therefore, temperature and water content are the key factors affecting the corrosion of steel materials in supercritical CO2 environment.

Key words:  supercritical CO2      A106 carbon steel      CO2 corrosion      localized corrosion     
Received:  08 October 2024      32134.14.1005.4537.2024.325
ZTFLH:  TG174  
Corresponding Authors:  LIU Hongwei, E-mail: liuhw35@mail.sysu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.325     OR     https://www.jcscp.org/EN/Y2025/V45/I4/1061

Fig.1  Schematic diagram of the corrosion experimental apparatus
Fig.2  Corrosion rates of A106 steel during exposure at 35 ℃ for 5 d in sc-CO2 environments with the different water contents of water
Fig.3  SEM images (a1-f1) and corresponding EDS analysis results (a2-f2) of the corrosion products formed on A106 steel after exposure at 35 ℃ in sc-CO2 environments containing 200 μL/L (a1, a2), 1000 μL/L (b1, b2), 1500 μL/L (c1, c2), 2000 μL/L (d1, d2), 2500 μL/L (e1, e2) and 3000 μL/L (f1, f2) H2O
Fig.4  XRD analysis results of the corrosion products formed on A106 steel exposed at 35 ℃ for 5 d in sc-CO2 environments containing 200 μL/L (a), 1000 μL/L (b), 1500 μL/L (c), 2000 μL/L (d), 2500 μL/L (e) and 3000 μL/L (f) H2O
Fig.5  Surface morphologies of A106 steel after removing the corrosion products formed during exposure at 35 ℃ for 5 d in sc-CO2 environments containing 200 μL/L (a-c), 1000 μL/L (d-f), 1500 μL/L (g-i), 2000 μL/L (j-l), 2500 μL/L (m-o) and 3000 μL/L (p-r) H2O
Fig.6  Corrosion rates of A106 steel during exposure for 5 d in sc-CO2 environment containing 2000 μL/L H2O at different temperatures
Fig.7  Surface morphologies and EDS results of A106 steel after exposure for 5 d in sc-CO2 environment containing 2000 μL/L H2O at 25 ℃ (a, b), 35 ℃ (c, d), 60 ℃ (e, f) and 100 ℃ (g, h)
Fig.8  XRD patterns of A106 steel exposed for 5 d in sc-CO2 environment containing 2000 μL/L H2O at 25 ℃ (a), 35 ℃ (b), 60 ℃ (c), 100 ℃ (d)
Fig.9  Two-dimension (a, d, g) and three-dimension (b, e, h) surface morphologies of the specimens and the corresponding curves of corrosion pits (c, f, i) after removing the corrosion products formed during exposure for 5 d in sc-CO2 environment containing 2000 μL/L H2O at 25 ℃ (a-c), 60 ℃ (d-f) and 100 ℃ (g-i)
[1] Wang S H, Zhang Y G, Ju W M, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis [J]. Science, 2020, 370: 1295
[2] Rehman A, Alam M M, Ozturk I, et al. Globalization and renewable energy use: how are they contributing to upsurge the CO2 emissions? A global perspective [J]. Environ. Sci. Pollut. Res., 2023, 30: 9699
[3] Al-Ghussain L. Global warming: review on driving forces and mitigation [J]. Environ. Prog. Sustain., 2019, 38: 13
[4] Hasan M M F, First E L, Boukouvala F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU [J]. Comput. Chem. Eng., 2015, 81: 2
[5] Gao Y X, Pan J, Li Y, et al. Research progress on the corrosion of the inner surface of pipeline used for transporting supercritical carbon dioxide [J]. Mater. Rep., 2024, 38: 180
(高怡萱, 潘 杰, 李 焰 等. 超临界二氧化碳输送管道内腐蚀研究进展 [J]. 材料导报, 2024, 38: 180)
[6] Cui G, Yang Z Q, Liu J G, et al. A comprehensive review of metal corrosion in a supercritical CO2 environment [J]. Int. J. Greenh. Gas Con., 2019, 90: 102814
[7] Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline steel in supercritical CO2 fluids [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 576
(胡丽华, 衣华磊, 杨维健 等. 水含量对超临界CO2输送管道腐蚀的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 576)
[8] Xiang Y, Li C, Hesitao W, et al. Understanding the pitting corrosion mechanism of pipeline steel in an impure supercritical CO2 environment [J]. J. Supercrit. Fluid., 2018, 138: 132
[9] Liu A Q, Bian C, Wang Z M, et al. Flow dependence of steel corrosion in supercritical CO2 environments with different water concentrations [J]. Corros. Sci., 2018, 134: 149
[10] Wei L, Pang X L, Gao K W. Effect of small amount of H2S on the corrosion behavior of carbon steel in the dynamic supercritical CO2 environments [J]. Corros. Sci., 2016, 103: 132
[11] Hua Y, Barker R, Charpentier T, et al. Relating iron carbonate morphology to corrosion characteristics for water-saturated supercritical CO2 systems [J]. J. Supercrit. Fluid., 2015, 98: 183
[12] Zhang Y C, Qu S P, Pang X L, et al. Review on corrosion behaviors of steels under supercritical CO2 condition [J]. Corros. Prot., 2011, 32: 854
(张玉成, 屈少鹏, 庞晓露 等. 超临界CO2条件下钢的腐蚀行为研究进展 [J]. 腐蚀与防护, 2011, 32: 854)
[13] Hua Y, Xu S S, Wang Y, et al. The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure [J]. Corros. Sci., 2019, 157: 392
[14] Wang C L, Hua Y, Nadimi S, et al. Anti-corrosion characteristics of FeCO3 and Fe x Ca y Mg z CO3 scales on carbon steel in high-PT CO2 environments [J]. Chem. Eng. J., 2022, 431: 133484
[15] Sun C, Ding T C, Sun J B, et al. Insights into the effect of H2S on the corrosion behavior of N80 steel in supercritical CO2 environment [J]. J. Mater. Res. Technol., 2023, 26: 5462
[16] Tang S, Zhu C Y, Cui G, et al. Analysis of internal corrosion of supercritical CO2 pipeline [J]. Corros. Rev., 2021, 39: 219
doi: 10.1515/corrrev-2020-0041
[17] Ren X D, Wang H, Wei Q, et al. Electrochemical behaviour of N80 steel in CO2 environment at high temperature and pressure conditions [J]. Corros. Sci., 2021, 189: 109619
[18] Li C, Xiang Y, Wang R T, et al. Exploring the influence of flue gas impurities on the electrochemical corrosion mechanism of X80 steel in a supercritical CO2-saturated aqueous environment [J]. Corros. Sci., 2023, 211: 110899
[19] Arzaghi E, Chia B H, Abaei M M, et al. Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines [J]. Process Saf. Environ. Prot., 2020, 141: 135
[20] El Amine Ben Seghier M, Keshtegar B, Tee K F, et al. Prediction of maximum pitting corrosion depth in oil and gas pipelines [J]. Eng. Fail. Anal., 2020, 112: 104505
[21] Hua Y, Barker R, Neville A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 [J]. Int. J. Greenh. Gas Con., 2014, 31: 48
[22] Jiang C Y, Wu J F, Sun Z J, et al. Solubility of water in supercritical CO2 [J]. Chem. Eng. (China), 2014, 42: 42
(蒋春跃, 吴建峰, 孙志娟 等. 水在超临界二氧化碳中的溶解度 [J]. 化学工程, 2014, 42: 42)
[23] Li K J, Sun L, Cao W K, et al. Pitting corrosion of 304 stainless steel in secondary water supply system [J]. Corros. Commun., 2022, 7: 43
[24] Araneda A A B, Kappes M A, Rodríguez M A, et al. Pitting corrosion of Ni-Cr-Fe alloys at open circuit potential in chloride plus thiosulfate solutions [J]. Corros. Sci., 2022, 198: 110121
[1] MA Heng, WANG Zhongxue, PANG Kun, ZHANG Qingpu, CUI Zhongyu. Localized Corrosion Behavior Induced by Corrosion-active Inclusion in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2025, 45(4): 1005-1013.
[2] LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang. Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[3] HAN Yulong, LI Jian, GUO Liya, YANG Bianjiang, LU Hengchang, WEI Xicheng, DONG Han. Localized Corrosion Behavior Induced by MnS Inclusions in HRB400E Rebar Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1255-1262.
[4] YANG Tao, XU Lei, WANG Jianchun, ZHANG Mingcheng, YAO Yanbo, GAO Guogang, XU Wenzhong, LI Changyun. Research Progress on CO2 Corrosion and Protective Countermeasures for Oil Casing[J]. 中国腐蚀与防护学报, 2024, 44(5): 1134-1144.
[5] LIU Guangsheng, WANG Weijun, ZHOU Pei, TAN Jinhao, DING Hongxin, ZHANG Wei, XIANG Yong. Corrosion Behavior of Casing Steels 13Cr and N80 During Sequestration in an Impure Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[6] OUYANG Jialu, WANG Xixi, HAN Xia, WANG Ziming. Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
[7] HU Lihua, YI Hualei, YANG Weijian, SUN Chong, SUN Jianbo. Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[8] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[9] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[10] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[11] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[12] HUANG Jiahe, YUAN Xi, CHEN Wen, YAN Wenjing, JIN Zhengyu, LIU Haixian, LIU Hongfang, LIU Hongwei. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[13] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[14] PAN Xin, REN Ze, LIAN Jingbao, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Heat Treatment Process on Corrosion Behavior of Super 13Cr Stainless Steel in CO2-Saturated Oilfield Formation Aqueous Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[15] ZHAO Haiyang, GAO Duolong, ZHANG Tong, LV You, ZHANG Yupeng, ZHANG Xinxin, SHI Xin, WEI Xiaojing, LIU Dongmei, DONG Zehua. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
No Suggested Reading articles found!