Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 1051-1060    DOI: 10.11902/1005.4537.2024.287
Current Issue | Archive | Adv Search |
Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy
CHEN Yuqiang1, RAN Guanglin1, LU Dingding1(), HUANG Lei2, ZENG Liying2, LIU Yang1, ZHI Qian1
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
2 Xiangtan Industrial and Mining Electric Transmission Vehicle Quality Inspection Center, Xiangtan 411200, China
Cite this article: 

CHEN Yuqiang, RAN Guanglin, LU Dingding, HUANG Lei, ZENG Liying, LIU Yang, ZHI Qian. Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1051-1060.

Download:  HTML  PDF(20068KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

7075 Al-alloy suffered often from corrosion damages during service in coastal area environments, due to seawater splash or salt atmosphere corrosion. Therefore, for the problem of high strength but poor corrosion resistance of 7075 Al-alloy, a cyclic strengthening (CS) process at ambient temperature is adopted to improve its strength and corrosion resistance. Compared with the traditional peak aging T6, the cyclic strengthening treated 7075 Al-alloy shows better corrosion resistance with higher free-corrosion potential and higher impedance value in electrochemical test. In NaCl solution, the intergranular corrosion depth of the T6 treated alloy was 58 μm, while that of the CS treated one was only 15 μm. The corrosion pits and corrosion microcracks formed for the CS alloy are smaller than that of the T6 ones in salt spray corrosion test. The corrosion products of both T6 and CS alloy contain Zn(OH)2 and ZnCl2, the formation of which is due to the electrochemical reaction between the η′(MgZn2) phase at the grain boundaries of the T6 alloy, and the clusters of atoms in the CS alloy and the Al-matrix, respectively. After the CS process, a large number of dislocations and clusters of atoms are generated within the 7075 Al-alloy, which hinders the dislocation movement and increases the free-corrosion potential, thereby improving the strength and corrosion resistance of the 7075 Al-alloy.

Key words:  7075 aluminum alloy      cycle strengthening      corrosion resistance      atomic clusters     
Received:  05 September 2024      32134.14.1005.4537.2024.287
ZTFLH:  TG179  
Fund: Natural Science Foundation of Hunan Province(2023JJ10019)
Corresponding Authors:  LU Dingding, E-mail: ludingding@hnust.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.287     OR     https://www.jcscp.org/EN/Y2025/V45/I4/1051

Fig.1  Machining dimensions of 7075 Al-alloy specimens (a), process parameters of T6 (b) and CS (c) heat treatments
Fig.2  One or more cycle-enhanced hysteresis lines and cycle-stress diagrams for 7075 Al-alloy: (a) one cycle, (b) many cycles, (c) cycle-stress level chart
Fig.3  Stress-strain curves of 7075 Al-alloy treated by T6 process and CS processes with different number of cycles (a), different strain (b) and different strain and number of times (c), and histograms of strength and elongation (d)
ProcessTensile strength / MPaYield strength / MPaElongation / %
T66165335.3
CS (optimized)5404166.9
Solution37116411.5
Table 1  Mechanical properties of 7075 Al-alloy treated by T6 and optimized CS processes
Fig.4  TEM images (a, d), intracrystalline images (b, e) and HAADF-STEM images of grain boundaries (c, f) for 7075 Al-alloy treated by T6 (a-c) and CS (d-f) processes, respectively
Fig.5  Intragranular HRTEM images (a, d), IFFT images (b, e) and FFT images (c, f) of 7075 Al-alloy treated by T6 (a-c) and CS (d-f) processes, respectively
Fig.6  Polarization curves (a) and impedance diagrams (b) of 7075 Al-alloy treated with T6 and CS
ProcessEcorr vs.SCE / VIcorr / μA·cm-2Rct / Ω·cm2
T6-0.870.471.61 × 103
CS-0.690.575.69 × 103
Table 2  Fitting parameters of polarization curves and impedance test results of 7075 Al-alloy treated with T6 and CS
Fig.7  XPS fine spectra of Al 2p3/2 (a, b) and Zn 2p3/2 (c, d) of T6 (a, c) and CS (b, d) treated 7075 Al-alloy specimens after 7 d immersion in 3.5%NaCl solution
Fig.8  Cross-sectional (a, b) and surface (c, d) morphologies of T6 (a, c) and CS (b, d) treated 7075 Al-alloy after intergranular corrosion for 6 h
Fig.9  Cross-sectional morphologies of T6 (a-c) and CS (d-f) treated 7075 Al-alloy after intergranular corrosion for 12 h (a, d), 24 h (b, e) and 48 h (c, f)
Fig.10  Corrosion depths of 7075 Al-alloy treated by T6 and CS after corrosion for different time
Fig.11  Surface morphologies of T6 (a-c) and CS (d-f) treated 7075 Al-alloy specimens after salt spray test
Fig.12  Schematic diagrams of corrosion mechanism of T6 and CS treated 7075 Al-alloy
[1] Li B B, Wang Y Q, Zhi X H, et al. A review on the research of the 7xxx series high strength aluminum alloys as structural material in China [J]. Prog. Steel Build. Struct., 2021, 23(7): 1
(李贝贝, 王元清, 支新航 等. 我国7xxx系高强铝合金及其研究进展 [J]. 建筑钢结构进展, 2021, 23(7): 1)
[2] LI H, Yan W J, Zhang Y, et al. Research progress of hot crack in fusion welding of advanced aeronautical materials [J]. J. Mater. Eng., 2022, 50(2): 50
doi: 10.11868/j.issn.1001-4381.2021.000676
(李 红, 闫维嘉, 张 禹 等. 先进航空材料焊接过程热裂纹研究进展 [J]. 材料工程, 2022, 50(2): 50)
[3] Gao Z G, He Y T, Zhang S, et al. Research on corrosion damage evolution of aluminum alloy for aviation [J]. Appl. Sci., 2020, 10: 7184
[4] Li S S, Yue X, Li Q Y, et al. Development and applications of aluminum alloys for aerospace industry [J]. J. Mater. Res. Technol., 2023, 27: 944
[5] Yang K, Jin P, Fan C Z. Study on corrosion damage distribution and failure law of naval aircraft structure [J]. Aeronaut. Comput. Techniq., 2010, 40(3): 65
(杨 凯, 金 平, 范存智. 飞机结构腐蚀损伤分布及失效规律研究 [J]. 航空计算技术, 2010, 40(3): 65)
[6] Altas E, Bati S, Rajendrachari S, et al. Comprehensive analysis of mechanical properties, wear, and corrosion behavior of AA7075-T6 alloy subjected to cryogenic treatment for aviation and defense applications [J]. Surf. Coat. Technol., 2024, 490: 131101
[7] Gürgen S, Sackesen İ, Kuşhan M C. Fatigue and corrosion behavior of in-service AA7075 aircraft component after thermo-mechanical and retrogression and re-aging treatments [J]. Proc. Inst. Mech. Eng., 2019, 233L: 1764
[8] Li C X, Xu J, Li J F, et al. Comparison of mechanical properties and corrosion behaviors of 7075 aluminum alloy at various aging systems [J]. Alum. Fabricat., 2009, (5): 10
(李朝兴, 徐 静, 李劲风 等. 不同时效制度7075铝合金力学性能及腐蚀性能综合比较研究 [J]. 铝加工, 2009, (5): 10)
[9] Mancha-Molinar H, López H, Silva A, et al. Role of T7 heat treating on the dimensional stability of automotive A319 Al alloys [R]. Detroit Michigan: SAE, 2004
[10] Kuang X Q, Li R L, Ji Q Q, et al. Effects of different heat treatments on mechanical properties and corrosion resistance of Al-7.95Zn-1.84Mg-0.65Cu aluminum alloy [J]. J. Northwest. Polytech. Univ., 2020, 38: 596
(匡秀琴, 李瑞雷, 季清清 等. 不同热处理对Al-7.95Zn-1.84Mg-0.65Cu合金力学性能和耐腐蚀性能的影响 [J]. 西北工业大学学报, 2020, 38: 596)
[11] Zhang Y, Zhang L T, Gao X, et al. Tailoring precipitate distribution in 2024 aluminum alloy for improving strength and corrosion resistance [J]. J. Mater. Sci. Technol., 2024, 194: 16
doi: 10.1016/j.jmst.2023.12.055
[12] Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363(6430): 972
doi: 10.1126/science.aav7086 pmid: 30819960
[13] Zhang Y, Zhu Y M, Marceau R K W, et al. Enhancing the strength and sensitization resistance of 5xxx alloys via nanoscale clustering induced by room-temperature cyclic plasticity [J]. Corros. Sci., 2024, 227: 111729
[14] Cao F H, Zhang Z, Li J F, et al. Exfoliation corrosion of aluminum alloy AA7075 examined by electrochemical impedance spectroscopy [J]. Mater. Corros., 2004, 55: 18
[15] Wang B, Zhang L W, Su Y, et al. Investigation on the corrosion behavior of aluminum alloys 3A21 and 7A09 in chloride aqueous solution [J]. Mater. Des., 2013, 50: 15
[16] Yang X K, Zhang L W, Zhang S Y, et al. Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments [J]. Mater. Corros., 2017, 68: 529
[17] Li Z, Zhang Z, Chen X G. Microstructure, elevated-temperature mechanical properties and creep resistance of dispersoid-strengthened Al-Mn-Mg 3xxx alloys with varying Mg and Si contents [J]. Mater. Sci. Eng., 2017, 708A: 383
[18] Dong C F, Xiao K, Xu L, et al. Characterization of 7A04 aluminum alloy corrosion under atmosphere with chloride ions using electrochemical techniques [J]. Rare Met. Mater. Eng., 2011, 40: 275
[19] Zhan D D, Wang C, Qian J Y, et al. Effect of trace Cl- and Cu2+ ions on corrosion behavior of 3A21 al-alloy in ethylene glycol coolant [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 383
(战栋栋, 王 成, 钱吉裕 等. 痕量Cl-和Cu2+对3A21铝合金在乙二醇冷却液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 383)
doi: 10.11902/1005.4537.2020.082
[20] Zhang F, Nilsson J O, Pan J S. In situ and operando AFM and EIS studies of anodization of Al 6060: influence of intermetallic particles [J]. J. Electrochem. Soc., 2016, 163: C609
[21] Zhang Y L, Yang H F, Sun P, et al. Effect of aging time on precipitation of MgZn2 and microstructure and properties of 7075 aluminum alloy [J]. J. Mater. Eng. Perform., 2024, 33: 6601
[22] Taşgın Y, Ergin R. Investigation of the effects of deformation aging applied to AA7075 aluminum alloy on mechanical and metallographic properties [J]. J. Mater. Eng. Perform., 2022, 31: 4583
[23] Liu D Q, Ke L M, Xu W P, et al. Intergranular corrosion behavior of friction-stir welding joint for 20 mm thick plate of 7075 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 293
(刘德强, 柯黎明, 徐卫平 等. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 293)
doi: 10.11902/1005.4537.2016.030
[24] Xu B, Ou H, Liu Q X X, et al. Property of electromagnetic welded joints of 5052 aluminum alloy and HC420LA high strength steel in salt fog corrosion [J]. China Mech. Eng., 2019, 30: 1506
(许 冰, 欧 航, 柳泉潇潇 等. 5052铝合金-HC420LA高强钢磁脉冲焊接接头盐雾腐蚀性能 [J]. 中国机械工程, 2019, 30: 1506)
[25] El Garchani F, Kabiri M R. Evaluation of AA 7075-T6 alloy's corrosion behavior using salt spray test [A]. The 17th International Conference Interdisciplinarity in Engineering [C]. Cham, 2023: 1
[26] Li B, Fan L, Sun B, et al. Corrosion mechanism of aluminum alloy materials under high corrosion conditions [J]. J. Chongqing Univ., 2023, 46(5): 31
(李 波, 樊 磊, 孙 博 等. 高腐蚀条件下用铝合金材料腐蚀机理 [J]. 重庆大学学报, 2023, 46(5): 31)
[27] Liu X, Liu H C, Li W P, et al. Corrosion fatigue behavior of 7075 aluminum alloy in saline water environment at different temperatures [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2850
(刘 轩, 刘慧丛, 李卫平 等. 7075铝合金在不同温度盐水环境中的腐蚀疲劳行为 [J]. 航空学报, 2014, 35: 2850)
[28] Liu Y R, Pan Q L, Li H, et al. Revealing the evolution of microstructure, mechanical property and corrosion behavior of 7A46 aluminum alloy with different ageing treatment [J]. J. Alloy. Compd., 2019, 792: 32
[29] Ebrahimi H, Taheri A K. Microstructural evolution in 7075 aluminum alloy during retrogression process: experimental and phase-field modeling [J]. J. Mater. Eng. Perform., 2024, 33: 4898
[30] Liu C, Li Q L, Zhang T Y, et al. Focusing on the relationship between the precipitated phases and the pitting corrosion of ZL101A aluminum alloy [J]. Surf. Topogr. Metrol. Prop., 2021, 9: 045047
[31] Zhang Y L, Yang H F, Sun P, et al. Effect of aging time on precipitation of MgZn2 and microstructure and properties of 7075 aluminum alloy [J]. J. Mater. Eng. Perform., 2024, 33: 6601
[1] YUE Rui, LIU Yongyong, YANG Lijing, ZHU Xinglong, CHEN Quanxin, A Naer, ZHANG Qingke, SONG Zhenlun. Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[2] ZHOU Qianyong, LAI Yang, LI Qian. Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[3] ZHANG Xiongbin, DANG En, YU Xiaojing, TANG Yufei, ZHAO Kang. Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[4] RAN Renhao, SHAN Huilin, ZHANG Pengjie, WANG Dongmei, SI Jiajia, XU Guangqing, LV Jun. Preparation and Corrosion Resistance of Surface Mg-alloying NdFeB Magnets[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[5] LI Mao, DENG Ke, CHEN Yanxiang, LIU Zhonghao, LI Shang, GUO Yuting, DONG Xuanpu, CAO Huatang. Influence of N2 Flow and Target-substrate Distance on Microstructure and Corrosion Resistance Properties of Multi-arc Ion Plated AlSiN Nano-composite Coatings[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[6] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[7] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[8] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[9] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[10] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[11] LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[12] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[13] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[14] MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[15] LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
No Suggested Reading articles found!