Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1196-1204    DOI: 10.11902/1005.4537.2024.359
Current Issue | Archive | Adv Search |
Electrochemical Impedance Spectroscopy Analysis on Interface State and Corrosion Mechanism of 7050 Al-alloy Subjected to Cavitation Erosion in NaCl Solution
XIA Da-Hai1(), PAN Chengcheng1, GUO Yujie1, HU Wenbin1, TRIBOLLET Bernard2
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2 Laboratoire Interfaces et Systèmes Electrochimiques (LISE), UMR 8235, CNRS-Sorbonne Université, Paris, France
Cite this article: 

XIA Da-Hai, PAN Chengcheng, GUO Yujie, HU Wenbin, TRIBOLLET Bernard. Electrochemical Impedance Spectroscopy Analysis on Interface State and Corrosion Mechanism of 7050 Al-alloy Subjected to Cavitation Erosion in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1196-1204.

Download:  HTML  PDF(5049KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cavitation is the main cause of failure of Al-alloy propellers in seawater environment, and understanding the dissolution mechanism of Al-alloy under cavitation is crucial for suppressing cavitation erosion. Therefore, the electrochemical corrosion behavior of 7050 Al-alloy in conditions of cavitation erosion was studied by means of electrochemical impedance spectroscopy (EIS). Results show that capacitance arc in the high-frequency region is related to the surface oxide film impedance and Faraday impedance, the diffusion impedance arc in the mid frequency region is related to the diffusion process of Al3+ ions in the Al(OH)3 film, and the inductance arc in the low-frequency region is related to the intermediate product Alads+. Then the expression of Faraday impedance ZF based on the kinetic model is deduced theoretically. The phase angle in the high-frequency region is not constant, and the impedance response of the oxide film under cavitation conforms to the Young model, indicating that its structure is relatively loose, and the resistivity of the inner layer of the oxide film is about 1010-1011 Ω·cm. In addition, its thickness is about 0.58-0.96 nm, and gradually decreases with the prolongation of cavitation time.

Key words:  cavitation erosion      electrochemical impedance spectroscopy      Young model      kinetic model      Al-alloy     
Received:  31 October 2024      32134.14.1005.4537.2024.359
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(52031007)
Corresponding Authors:  XIA Da-Hai, E-mail: dahaixia@tju.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.359     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1196

Fig.1  Details of the electrochemical cell and the specimen fixture designed to implement a cavitation erosion condition: (a) schematic diagram of cavitation erosion experimental device, (b) photo of the horn tip, (c) photo of the working electrode for electrochemical measurements that was sealed in epoxy resin and fixed in the fixture by screw bolts, and the dimensions of 7050 Al-alloy specimens for electrochemical and nonelectrochemical tests (units: mm)
Fig.2  Cavitation erosion morphologies at center and outer ring of 7050 Al-alloy specimens for gap width of 1 mm, after 5 min cavitation erosion (a1, b1) morphologies of two typical regions, (a2, a3) local magnified images of the region 1and region 2 in Fig2a1, (b2, b3) local magnified images of the region 3 and region 4 marked in Fig.2b1
Fig.3  Polarization curve of 7050 Al-alloy under natural immersion and cavitation erosion corrosion conditions in 3.5%NaCl solution
Fig.4  EIS results of 7050 Al-alloy under natural imm-ersion and cavitation erosion corrosion conditi-ons in 3.5%NaCl solution: (a) Nyquist plots (b) Bode plots
Fig.5  Ohm resistance-corrected bode plot of 7050 Al-alloy under cavitation erosion in 3.5%NaCl solution
Fig.6  Electrochemical equivalent circuit of 7050 Al-alloy under cavitation condition in NaCl solution
GroupReal gap widthCeff / μF·cm-2Rp / Ω·cm2p / nm
0.5-1 h0.528.95 ± 0.89408 ± 161.14
0.5-2 h0.5510.43 ± 1266.6 ± 110.98
0.5-4 h0.6013.27 ± 1.2128.7 ± 7.80.76
Table 1  Fitting results of EIS given by Measurement model
Fig.7  Resistivity profile of the oxide layer on 7050 Al-alloy during cavitation in 3.5%NaCl solution
Fig.8  Concentration profile of Al3+ in the Al(OH)3 diffusion layer
Fig.9  Nyquist diagrams of the 7050 Al-alloy electrode after 1 h (a), 2 h (b) and 4 h (c) cavitation erosion in 3.5%NaCl solution and the result of the fitting procedure with the model (Eqs. (30) and (33)) (Solid line)
ParametersUnitt = 1 ht = 2 ht = 4 h
ρ0Ω·cm-11.02 × 10118.74 × 10111.41 × 1012
pnm0.960.7540.58
λnm0.1410.07830.0378
ReΩ·cm29.619.509.50
δcm1.31 × 10-39.01 × 10-41.26 × 10-4
k1mol·cm-2·s-12.36 × 10-41.234 × 10-41.07 × 10-4
b1V-115.8342.5269.56
k2s-11.08 × 10-62.286 × 10-62.67 × 10-6
b2V-19.0640.06124.03
k-2cm·s-12.78 × 10-36.466 × 10-42.973 × 10-4
b-2V-176.11267.29132.67
βmol·cm-28.22 × 10-42.917 × 10-42.543 × 10-4
1-θ-2.25 × 10-64.88 × 10-66.30 × 10-6
CAl3+mol·cm-31.29 × 10-71.00 × 10-71.57 × 10-8
Table 2  Parameters obtained from the regression of the EIS experimental data
[1] Yuan Q, Li N, Li Y J, et al. Corrosion behavior of 316L SS under cavitation condition in simulated seawater [J]. Anti-Corros. Methods Mater., 2023, 70: 18
[2] Ma J K, Hou G L, Cao H B, et al. Why does seawater corrosion significantly inhibit the cavitation erosion damage of nickel-aluminum bronze? [J]. Corros. Sci., 2022, 209: 110700
[3] Cao L F, Qin Z B, Deng Y D, et al. Effect of passive film on cavitation corrosion behavior of 316L stainless steel [J]. Int. J. Electrochem. Sci., 2020, 15: 628
[4] Qin Z B, Cao L F, Deng Y D, et al. Effect of oxide film on the cavitation erosion-corrosion behavior of nickel-aluminum bronze alloy [J]. Corrosion, 2020, 76: 1136
[5] Yu H F, Shao B, Zhang Y, et al. Preparation and properties of Zr-based conversion coating on 2A12 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 101
于宏飞, 邵 博, 张 悦 等. 2A12铝合金锆基转化膜的制备及性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 101
doi: 10.11902/1005.4537.2020.216
[6] Mao Y C, Zhu Y, Sun S K, et al. Localized corrosion of 5083 Al-alloy in simulated marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 47
毛英畅, 祝 钰, 孙圣凯 等. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 47
doi: 10.11902/1005.4537.2022.162
[7] Hu J X, Zhang L M, Ma A L, et al. Effect of cavitation intensity on the cavitation erosion behavior of 316L stainless steel in 3.5wt.% NaCl solution [J]. Metals, 2022, 12: 198
[8] Krella A K, Krupa A. Effect of cavitation intensity on degradation of X6CrNiTi18-10 stainless steel [J]. Wear, 2018, 408-409: 180
[9] Wu L, Xu Y T, Ma A L, et al. Influence of pre-immersion aeration conditions on corrosion product films and erosion-corrosion resistance of 90/10 and 70/30 copper-nickel tubes in 1 wt% NaCl solution [J]. Corros. Sci., 2024, 228: 111817
[10] Wang W Y, Zhang W J, Huang G J, et al. Effect of in-situ pre-soaking in seawater on the erosion-corrosion properties and micro-mechanism of nickel aluminium bronze alloy [J]. Corros. Sci., 2024, 228: 111841
[11] Su J X, Bai Y, Guan Q F, et al. Electrochemical impedance spectroscopy analysis of failure of aircraft surface coating [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 251
苏景新, 白 云, 关庆丰 等. 飞机蒙皮结构表面涂层失效的电化学阻抗分析 [J]. 中国腐蚀与防护学报, 2013, 33: 251
[12] Gu B S, Liu J H. A research on pH during the procession of the cerium(III) film formation of aluminum alloys by EIS [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 124
顾宝珊, 刘建华. 电化学阻抗谱研究pH值对铝合金表面铈盐转化膜形成过程的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 124
[13] Tribollet B, Vivier V, Orazem M E. EIS technique in passivity studies: determination of the dielectric properties of passive films [A]. Wandelt K. Encyclopedia of Interfacial Chemistry [M]. Oxford: Elsevier, 2018: 93
[14] Nkoua C, Esvan J, Tribollet B, et al. Combined electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy analysis of the passive films formed on 5083 aluminium alloy [J]. Corros. Sci., 2023, 221: 111337
[15] Liao H Q, Watson W, Dizon A, et al. Physical properties obtained from measurement model analysis of impedance measurements [J]. Electrochim. Acta, 2020, 354: 136747
[16] Huet F, Rousseau P, Takenouti H. Simad software for simulating and fitting electrochemical impedances (https://lise-www.sorbonne-universite.fr/en/simad). 2012
[17] Baril G, Galicia G, Deslouis C, et al. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions [J]. J. Electrochem. Soc., 2007, 154: C108
[18] Chen Y M, Nguyen A S, Orazem M E, et al. Identification of resistivity distributions in dielectric layers by measurement model analysis of impedance spectroscopy [J]. Electrochim. Acta, 2016, 219: 312
[19] Wandelt K. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry [M]. Amsterdam: Elsevier, 2018: 93
[20] Marcus Y. Ions in Solution and Their Solvation [M]. Hoboken: John Wiley & Sons Inc., 2015: 10
[21] Pan C C, Xia D H, Hou M Y, et al. Cavitation erosion of the AA7050 aluminum alloy in 3.5 wt%NaCl solution—Part 1: mitigating effect by corrosion [J]. Corros. Sci., 2024, 232: 112012
[1] GUO Yujie, LI Yanhui, XIA Da-Hai, HU Wenbin. Data Analysis and Physical Model of Electrochemical Impedance Spectroscopy for Corrosion Systems: Progresses and Challenges[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[2] DING Zhichao, ZHANG Shuguo, XIAO Xiaochun, WANG Di, LI Wenjie, JIANG Lihong. Intergranular Corrosion Behavior of Friction Stir Welded Joints of Semi-solid 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[3] LEI Tao, CHEN Shaogao, LIU Xiuli, FAN Jinlong, ZHENG Xingwen. Corrosion Behavior of Laser Additive Manufacturing AlSi10Mg Al-alloy in Ethylene Glycol Coolant and Detection of Coolant Degradation[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[4] LI Li, LI Shanwen, SHI Hongwei, LIANG Guoping, LI Chunlin, SUN Yu, QIN Jin, WANG Wei, HAN En-Hou. Corrosion Behavior and Hydrothermal Aging Mechanism of Epoxy Primer on Al-alloy for High-speed Train[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[5] DU Jin, HU Linlan, SUN Jian, SONG Qinghua, CHEN Meng, XIAO Jinkun. Tribo-corrosion Performance of 7075-T6 Al-alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(3): 803-811.
[6] SONG Xiaowen, BAI Miaomiao, CHEN Nana, GAO Yihui, FENG Yali, LIU Qianqian, ZHANG Yaoyao, LU Lin, WU Junsheng, XIAO Kui. Effect of Aspergillus Aculeatus on Corrosion Behavior of 5A02 Al-alloy in Coastal Atmospheric Environment of Hainan Island[J]. 中国腐蚀与防护学报, 2025, 45(3): 631-642.
[7] ZHENG Wentao, LU Feixue, DU Kai, WANG Zhihui, JIA Hailong. Effect of Shot Peening on Surface Properties of 7075 Al-alloy Sheet[J]. 中国腐蚀与防护学报, 2025, 45(3): 765-772.
[8] ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[9] WANG Mingyang, XIA Da-Hai. Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[10] WENG Shuo, MENG Chao, LUO Linghua, YUAN Yiwen, ZHAO Lihui, FENG Jinzhi. Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-alloy Under Mechanical-chemical Interaction Based on Cellular Automata Method[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
[11] WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Degradation Behavior of an Epoxy Corrosion-resistant Coating in NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[12] FAN Zhibin, GAO Zhiyue, ZONG Lijun, WU Yaping, LI Xingeng, JIANG Bo, DU Baoshuai. Corrosion Behaviour and Characteristics of 1050A Al-alloy Exposed in Typical Atmospheres of Shandong Province[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[13] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[14] WU Hailiang, CHEN Yuqiang, HUANG Liang, GU Hongyu, SUN Hongbo, LIU Jiajun, WANG Naiguang, SONG Yufeng. Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[15] WENG Shuo, MENG Chao, ZHU Jiangfeng, WANG Ai, CHANG Xin, KANG Yun, HE Xiaotian, ZHAO Lihui. Effect of Fatigue Damage Under Stress-controlled Mode on the Corrosion Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
No Suggested Reading articles found!