Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1234-1242    DOI: 10.11902/1005.4537.2023.340
Current Issue | Archive | Adv Search |
Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings
LYU Xiaoming1, WANG Zhenyu1(), HAN En-Hou1,2()
1 Institute of Corrosion Science and Technology, Guangzhou 510000, China
2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510000, China
Cite this article: 

LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1234-1242.

Download:  HTML  PDF(7510KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Located on coastal areas, facilities and pipelines serviced at high temperature will encounter from humid-hot corrosive environments for a long period, which can lead to deterioration of their thermal insulation coating. In this study, nano-ZrO2 particles modified corrosion-resistant and thermal insulated epoxy coatings were prepared and characterized in terms of salt water resistance, salt fog resistance, cold and heat shock resistance and thermal insulation performance. The results showed that the corrosion resistance and thermal insulation stability of nano-modified coatings in corrosive environments could be significantly improved. The improvement effect was the best when 3% nano- ZrO2 particles was added, but the ideal protective performance could not be achieved when the content was too small or too much.

Key words:  marine environment      nano- ZrO2      epoxy coating      corrosion resistance      thermal insulation     
Received:  01 November 2023      32134.14.1005.4537.2023.340
ZTFLH:  TQ174  
Fund: National Key Research and Development Program(2021YFB3701700);Natural Guangdong Science Foundation(2021A1515010628)
Corresponding Authors:  WANG Zhenyu, E-mail: zywang@icost.ac.cnHAN En-Hou, E-mail: ehhan@icost.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.340     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1234

CoatingComposition
Z075% epoxy resin + 10% glass-flake + 10% glass beads + 5% solvent + 30% curing agent
Z1

74% epoxy resin + 10% glass-flake + 10% glass beads + 1% nano zirconia slurry concentrate +

5% solvent + 29.6% curing agent

Z3

72% epoxy resin + 10% glass-flake + 10% glass beads + 3% nano zirconia slurry concentrate +

5% solvent + 28.8% curing agent

Z5

70% epoxy resin + 10% glass-flake + 10% glass beads + 5% nano zirconia slurry concentrate +

5% solvent + 28% curing agent

Table 1  Compositions of four test coatings
Fig.1  TEM images (a, b), SAED pattern (c) and size distributions (d, e) of untreated (a, d) and treated (b, e) nano ZrO2 powders, and their settlement after 90 d (f)
Fig.2  Macro-morphologies of the coatings before (a-d) and after (e-h) immersion in 3.5%NaCl solution at 60oC for 500 h
Fig.3  Nyquist (a, b) and Bode (c) plots of the test coatings immersed in 3.5%NaCl solution at 60oC for 24 h
Fig.4  Nyquist (a, b) and Bode (c) of plots of the test coatings immersed in 3.5%NaCl solution at 60oC for 480 h
Fig.5  Nyquist (a, b) and Bode (c) plots of the test coatings immersed in 3.5%NaCl solution at 60oC for 960 h
Fig.6  Nyquist (a, b) and Bode (c) plots of the test coatings immersed in 3.5%NaCl solution at 60oC for 1440 h
Fig.7  Equivalent circuit diagram of EIS of unmodified and modified epoxy coatings
Sample

Time

h

Rs

Ω·cm2

Qcoat

F·cm-2

nc

Rcoat

Ω·cm2

Qct

F·cm-2

nct

Rct

Ω·cm2

Z0240.361.12 × 10-90.943.90 × 10101.95 × 1030.992.34 × 109
4804.628.83 × 10-100.979.55 × 1064.60 × 10-60.778.41 × 106
9602.434.21 × 1090.982.79 × 1051.41 × 10-50.395.22 × 105
14407.734.79 × 10-90.998.02 × 1042.46 × 10-50.401.03 × 105
Z1240.427.30 × 10-100.909.52 × 10103.28 × 10-90.131.01 × 109
4806.981.15 × 10-100.994.13 × 1087.41 × 10-80.876.04 × 107
9603.592.83 × 10-90.954.87 × 1073.13 × 10-70.729.43 × 107
14406.621.53 × 10-90.996.99 × 1062.06 × 10-60.681.78 × 106
Z3240.384.75 × 10-110.967.23 × 10103.16 × 10-110.853.51 × 1010
4805.156.39 × 10-110.974.38 × 10102.87 × 10-80.011.61 × 109
9603.292.17 × 10-90.911.28 × 1091.52 × 10-70.019.31 × 108
14403.281.36 × 10-90.951.82 × 1081.36 × 10-70.653.22 × 107
Z5240.285.56 × 10-110.964.83 × 10102.92 × 1050.931.58 × 109
4805.282.09 × 10-100.965.04 × 1093.21 × 1020.762.81 × 108
9604.566.37 × 10-100.988.47 × 1083.48 × 10-80.607.70 × 108
14404.321.49 × 10-90.961.05 × 1075.21 × 10-90.147.11 × 106
Table 2  Fitting results of EIS of unmodified and modified epoxy coatings immersed in 3.5%NaCl solution at 60oC for different time
Fig.8  Changes of electrochemical element parameters Rcoat (a), Rct (b), Ceffcoat (c) of unmodified and modified epoxy coatings with immersion time
Fig.9  Changes of the adhesion strengths of four coatings with immersion time in 3.5%NaCl solution at 60oC
Fig.10  Macro-morphologies of four test coatings before (a-d) and after 2100 h salt spray corrosion (e-h)
Fig.11  Mass losses of four coatings after wear test for different cycles
Fig.12  Optical photos of four test coatings before (a-d) and after (e-h) thermal cycling test for 20 cycles
Fig.13  Temperature difference-time thermal insulation curves of four test coatings after salt spray corrosion for different time
1 Alam M, Singh H, Limbachiya M C. Vacuum insulation panels (VIPs) for building construction industry-a review of the contemporary developments and future directions [J]. Appl. Energy, 2011, 88: 3592
2 Joudi A, Svedung H, Cehlin M, et al. Reflective coatings for interior and exterior of buildings and improving thermal performance [J]. Appl. Energy, 2013, 103: 562
3 Cao J Y, Zang B L, Cao B X, et al. Influence of chemical bonding interface of modified basalt/epoxy coating on its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1009
曹京宜, 臧勃林, 曹宝学 等. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1009
doi: 10.11902/1005.4537.2021.312
4 Wu G D. Preparation and characterization of silica thermal insulation coatings [D]. Harbin: Harbin Institute of Technology, 2017
武国栋. 二氧化硅隔热涂料的制备及性能表征 [D]. 哈尔滨: 哈尔滨工业大学, 2017
5 Wang J, Zhao P Y, Wang K W, et al. Effect of three kinds of thermal insulation on fireproof and thermal insulation properties of epoxy coating [J]. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.), 2019, 40(1): 62
王 杰, 赵潘宇, 王渴望 等. 三种隔热填料对环氧涂层的阻燃和隔热性能的影响 [J]. 青岛科技大学学报(自然科学版), 2019, 40(1): 62
6 Liang X L, Liu Q, Wang G, et al. Study on corrosion resistance and thermal insulation properties of graphene oxide modified epoxy thermal insulation coating [J]. Chin. J. Mater. Res., 2020, 34: 345
doi: 10.11901/1005.3093.2019.543
梁新磊, 刘 茜, 王 刚 等. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究 [J]. 材料研究学报, 2020, 34: 345
doi: 10.11901/1005.3093.2019.543
7 Wang G R, Mei Z Y, Li Y, et al. Zinc-containing metal-organic frameworks nanospheres for flame retardation and thermal insulation performance in epoxy resin-based coatings [J]. Polym. Test., 2023, 128: 108209
8 Gowtham S, Hariprasad S, Arunnellaiappan T, et al. An investigation on ZrO2 nano-particle incorporation, surface properties and electrochemical corrosion behaviour of PEO coating formed on Cp-Ti [J]. Surf. Coat. Technol., 2017, 313: 263
9 Ramanathan E, Balasubramanian S. Comparative study on polyester epoxy powder coat and amide cured epoxy liquid paint over nano-zirconia treated mild steel [J]. Prog. Org. Coat., 2016, 93: 68
10 Torrico R F A O, Harb S V, Trentin A, et al. Structure and properties of epoxy-siloxane-silica nanocomposite coatings for corrosion protection [J]. J. Colloid Interf. Sci., 2018, 513: 617
doi: S0021-9797(17)31374-7 pmid: 29202281
11 Hang T T X, Truc T A, Nam T H, et al. Corrosion protection of carbon steel by an epoxy resin containing organically modified clay [J]. Surf. Coat. Technol., 2017, 201: 7408
12 Yu F, Wang X, Zhang Z. Research progress of nanofillers for epoxy anti-corrosion coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 220
于 芳, 王 翔, 张 昭. 纳米填料在环氧防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 220
13 Liu L, Shao Z Y, Jia T Y, et al. Research progress on application of halloysite nanotubes for modification of smart anti-corrosion coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 523
刘 玲, 邵紫雅, 贾天越 等. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 523
14 Song H J, Zhang Z Z. Investigation of the tribological properties of polyfluo wax/polyurethane composite coating filled with nano-SiC or nano-ZrO2 [J]. Mater. Sci. Eng., 2006, 426A: 59
15 Ebrahim-Ghajari M, Allahkaram S R, Mahdavi S. Corrosion behaviour of electrodeposited nanocrystalline Co and Co/ZrO2 nanocomposite coatings [J]. Surf. Eng., 2015, 31: 251
16 Li J L, Peng C, Li Z W, et al. The improvement in cryogenic mechanical properties of nano-ZrO2/epoxy composites via surface modification of nano-ZrO2 [J]. RSC Adv., 2016, 6: 61393
17 Xu W H, Wang Z Y, Han E-H, et al. Corrosion performance of nano-ZrO2 modified coatings in hot mixed acid solutions [J]. Materials (Basel), 2018, 11: 934
18 Chang J W, Wang Z Y, Han E-H, et al. Corrosion resistance of tannic acid, D-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments [J]. J. Mater. Sci. Technol., 2021, 65: 137
[1] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[2] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[3] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[4] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[5] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[6] WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Degradation Behavior of an Epoxy Corrosion-resistant Coating in NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[7] ZHANG Juhuan, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Electrochemical Performance of a Novel Al-Zn-In-Sn-La Sacrificial Anode Alloy in Simulated Marine Environments[J]. 中国腐蚀与防护学报, 2024, 44(5): 1223-1233.
[8] FENG Shaoyu, ZHOU Zhaohui, YANG Lanlan, QIAO Yanxin, WANG Jinlong, WANG Fuhui. Electrochemical and Wear Behavior of TC4 Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[9] MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[10] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[11] LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[12] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[13] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[14] HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[15] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
No Suggested Reading articles found!