Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1223-1233    DOI: 10.11902/1005.4537.2023.362
Current Issue | Archive | Adv Search |
Electrochemical Performance of a Novel Al-Zn-In-Sn-La Sacrificial Anode Alloy in Simulated Marine Environments
ZHANG Juhuan1, LIU Jing1(), PENG Jingjing1, ZHANG Xian1, WU Kaiming1,2
1 Collaborative Innovation Center for Advanced Steels, State Key Laboratory of Refractory Material and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
2 Metals Valley & Band (Foshan) Metallic Composite Co., Ltd., Foshan 528000, China
Cite this article: 

ZHANG Juhuan, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Electrochemical Performance of a Novel Al-Zn-In-Sn-La Sacrificial Anode Alloy in Simulated Marine Environments. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1223-1233.

Download:  HTML  PDF(16001KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Taking the commercial sacrificial anode alloy Al-Zn-In as reference, a novel alloy Al-Zn-In-Sn-La was designed and made. Then the performance of the two alloys in simulated conditions of shallow-sea and deep-sea was comparatively assessed via measurements of corrosion mass loss, open-circuit potential, potentiodynamic polarization curves, and potentiostatic polarization curves. Results showed that, the discharge capacity of the Al-Zn-In-Sn-La alloy was slightly higher than that of the commercial Al-Zn-In alloy in the simulated marine environments, which may be related to the breakdown of the integrity of the passive film and the improvement of the anion and cation vacancies of the passivation film to promote ion migration, due to the synergistic activation effect of In, Zn, and Sn. Meanwhile, the novel alloy presents current efficiency of 90.01%, which was much higher than 75.87% of the commercial alloy in shallow sea condition, similarly, that was 82.99% and 75.48% in the deep-sea conditions, respectively. All the actions of the low free-corrosion rate of the alloy, the weakened micro-galvanic effect between the precipitated phase along grain boundaries with the matrix, and the refinement of grain boundaries by rare earth elements to promote uniform dissolution may significantly promote the improvement of the current efficiency of the novel alloy. It is worth mentioning that, the discharge capacity of the two alloys are significantly reduced in the simulated deep-sea environment. Which may be ascribed to the lower temperature and oxygen content, the slow-down of dissolution and deposition rate of ions, which reduces the surface-active sites of the alloys, leading to the passivation of the sacrificial anode Al-based alloys. It is expected that the designment of high entropy alloys might be an effective approach to overcome the problem of low discharge capacity of sacrificial anode alloys in deep-sea environment, by significantly improving the solubility of active alloying elements, and thereby improving the deep-sea discharging performance.

Key words:  Al alloy sacrificial anode      simulated marine environment      discharge capacity      current efficiency     
Received:  17 November 2023      32134.14.1005.4537.2023.362
ZTFLH:  TG174  
Fund: Hubei Province Department of Education(D20221103);Hubei Province Key Laboratory of Systems Science in Metallurgical Process(Y202204)
Corresponding Authors:  LIU Jing, E-mail: liujing2015@wust.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.362     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1223

Fig.1  Schematic diagram of deep-sea high-pressure reactor. (a) Electrochemical test system, (b) corrosion immersion experiment system. (1-High pressure nitrogen gas, 2-Inlet valve, 3-Tightening bolt, 4-Solid state high pressure reference electrode, 5-Thermocouple, 6-Working electrode, 7-Platinum electrode, 8-Pressure gauge, 9-Outlet valve, 10-Electronic temperature and pressure monitoring device, 11-Low temperature oil bath furnace, 12-Rotating cage, 13-Sample)
Fig.2  Metallographic micrographs of commercial Al-Zn-In alloy (a) and smelted Al-Zn-In-Sn-La alloy (b)
Fig.3  Surface morphology and EPMA analysis results of commercial Al-Zn-In alloy: (a) back-scattering image,(b) Al distribution image, (c) Zn distribution image, (d) In distribution image
Fig.4  Surface morphology and EPMA analysis results of smelted Al-Zn-In-Sn-La alloy: (a) back-scattering image, (b) Al distribution image, (c) Zn distribution image, (d) In distribution image, (e) Sn distribution image, (f) La distribution image
Fig.5  Corrosion rate of Al-Zn-In and Al-Zn-In-Sn-La alloys at simulated shallow-sea environment (a) and simulated deep-sea environment (b)
Fig.6  Self corrosion morphologies of Al-Zn-In (a-d) and Al-Zn-In-Sn-La (e-h) alloys after immersion in simulated shallow-sea (a, b, e, f) and deep sea (c, d, g, h) marine environment for 10 d
Fig.7  Comparison of potentiodynamic polarization curves of Al-Zn-In and Al-Zn-In-Sn-La alloys at simulated shallow-sea environment (a) and simulated deep-sea environment (b)
AlloyShallow-seaDeep-sea
Icorr / A·cm-2Ecorr / V vs. SCEIcorr / A·cm-2Ecorr / V vs. SCE
Al-Zn-In2.81 × 10-5-1.03652.06 × 10-5-0.9305
Al-Zn-In-Sn-La1.24 × 10-6-1.19352.91 × 10-5-1.0255
Table 1  Corrosion current density and corrosion potential of the two alloys obtained from potentiodynamic polarization curves by Tafel extrapolation
Fig.8  Comparison of OCP of Al-Zn-In and Al-Zn-In-Sn-La alloys at simulated shallow-sea environment (a) and simulated deep-sea environment (b)
Fig.9  Potentiostatic polarization curves of Al-Zn-In and Al-Zn-In-Sn-La alloys at simulated shallow-sea environment (a) and simulated deep-sea environment (b)
EnvironmentAlloyQ0 / A·h·kg-1Q / A·h·kg-1ΔW / mg·cm-2η / %
Shallow-seaAl-Zn-In291333.44 ± 8.3015.10 ± 3.7375.87 ± 0.66
Al-Zn-In-Sn-La288135.31 ± 3.7713.67 ± 2.3390.01 ± 5.24
Deep-seaAl-Zn-In29137.67 ± 1.563.51 ± 0.8875.48 ± 2.94
Al-Zn-In-Sn-La28818.69 ± 1.063.68 ± 0.4882.99 ± 10.69
Table 2  Discharge performance of the two different alloys at simulated marine environments
Fig.10  Dissolved morphologies of Al-Zn-In (a, c) and Al-Zn-In-Sn-La (b, d) alloys after potentiostatic polarization in simulated shallow-sea environment (a, b) and simulated deep-sea environment (c, d)
Fig.11  Surface morphologies (a, b, d, e) and SKPFM (c, f) results of Al-Zn-In (a-c) and Al-Zn-In-Sn-La (d-f) alloys
1 Xu L K, Xin Y L, Ma L, et al. Challenges and solutions of cathodic protection for marine ships [J]. Corros. Commun., 2021, 2: 33
2 Qu J E, Qi G T. Current status of research on aluminum alloy sacrificial anodes [J]. Mater. Rep., 2001, 15(11): 24
屈钧娥, 齐公台. 铝合金牺牲阳极材料研究现状 [J]. 材料导报, 2001, 15(11): 24
3 Zhang G Q, Qian S C, Zhang Y H, et al. Electrochemical properties of Al-Zn-In aluminum alloy sacrificial anodes [J]. Equip. Environ. Eng., 2019, 16(8): 1
张国庆, 钱思成, 张有慧 等. Al-Zn-In系铝合金牺牲阳极电化学性能研究 [J]. 装备环境工程, 2019, 16(8): 1
4 Zhang G Q, Qian S C, Zhang Y H, et al. Study on electrochemical properties of aluminum alloy sacrificial anodes under the conditions of low temperature and high pressure in the deep sea [J]. Total Corros. Control, 2019, 33(3): 23
张国庆, 钱思成, 张有慧 等. 深海低温高压条件下铝合金牺牲阳极电化学性能研究 [J]. 全面腐蚀控制, 2019, 33(3): 23
5 Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10
李成杰, 杜 敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10
6 Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
曹 攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
7 Bai L, Conway B E. Role of indium in promoting anodic dissolution of Al-In alloys in non-aqueous electrolyte [J]. J. Appl. Electrochem., 1992, 22: 131
8 Bessone J B, Flamini D O, Saidman S B. Comprehensive model for the activation mechanism of Al-Zn alloys produced by indium [J]. Corros. Sci., 2005, 47: 95
9 Breslin C B, Carroll W M. The effects of indium precipitates on the electrochemical dissolution of Al-In alloys [J]. Corros. Sci., 1993, 34: 1099
10 Li W L, Yan Y G, Chen G, et al. The effect of temperature and dissolved oxygen concentration on the electrochemical behavior of Al-Zn-Inbased anodes [J]. Procedia Eng., 2011, 12: 27
11 Sun H J, Liu L, Li Y, et al. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment [J]. Corros. Sci., 2013, 77: 77
12 Gao Q Y, Wang H H, Li C L, et al. Compositional optimization and field test of Al alloys for active sacrificial anode [J]. Corros. Sci. Prot. Technol., 2018, 30: 229
高青阳, 王焕焕, 李春霖 等. 铝合金活性阳极成分优化与实海实验研究 [J]. 腐蚀科学与防护技术, 2018, 30: 229
doi: 10.11903/1002.6495.2017.172
13 Hu S N. Research on property of Al-Zn-In sacrificial anode under simulate deep sea water [D]. Harbin: Harbin Engineering University, 2012
胡胜楠. 模拟深海环境下Al-Zn-In牺牲阳极性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012
14 Jia H G. Research on property of Zn reference sacrificial electrode and aluminum alloy anodes under deep-sea simulation [D]. Qingdao: Ocean University of China, 2014
贾红刚. 模拟深海环境下锌参比电极与铝合金牺牲阳极性能研究 [D]. 青岛: 中国海洋大学, 2014
15 Zhang S. Research on the influence of deep sea environmental factors on sacrificial anode dissolution [D]. Harbin: Harbin Engineering University, 2017
张帅. 深海环境因素对牺牲阳极活化过程影响的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017
16 Zhang R, Cui Y, Liu L, et al. Effect of synergy of water pressure and flow speed on free-corrosion behavior of Al-Zn-In sacrificial anode in deep-sea envioronment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 329
张 睿, 崔 宇, 刘莉 等. 深水压力-流速交互作用下Al-Zn-In牺牲阳极的自腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 329
17 Song Q Y, Zhang H B, Ma L, et al. Effect of Mg content on the properties of Al-Zn-In-Mg-Ti-Ga-Mn sacrificial anode [J]. Mater. Prot., 2021, 54(2): 70
宋卿源, 张海兵, 马 力 等. Mg含量对Al-Zn-In-Mg-Ti-Ga-Mn牺牲阳极性能的影响 [J]. 材料保护, 2021, 54(2): 70
18 Kulkarni A G, Gurrappa I. Effect of magnesium addition on surface free energy and anode capacity of indium activated aluminium alloys [J]. Brit. Corros. J., 1993, 28: 67
19 Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
孙海静, 覃 明, 李 琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
doi: 10.11902/1005.4537.2019.180
20 Ma J L, Wen J B, Zhai W X, et al. In situ corrosion analysis of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy [J]. Mater. Charact., 2012, 65: 86
21 Li W Y, Cao R H, Xu L N, et al. The role of hydrogen in the corrosion and cracking of steels-a review [J]. Corros. Commun., 2021, 4: 23
22 Cheng K, Chen Q, Gao C W, et al. Correlation between microstructure and properties of aluminum alloy sacrificial anodes containing Mg in the seawater environment [J]. J. Guangxi Acad. Sci., 2017, 33: 195
程 坤, 陈 琴, 高朝文 等. 含Mg铝合金牺牲阳极在海水环境中组织与性能的相关性 [J]. 广西科学院学报, 2017, 33: 195
23 Ma J L, Wen J B. The effects of lanthanum on microstructure and electrochemical properties of Al-Zn-In based sacrificial anode alloys [J]. Corros. Sci., 2009, 51: 2115
24 Saeri M R, Keyvani A. Optimization of manganese and magnesium contents in as-cast aluminum-zinc-indium alloy as sacrificial anode [J]. J. Mater. Sci. Technol., 2011, 27: 785
25 Li W L. New type deep-water aluminum alloy sacrificial anode preparation and performance research [D]. Nanjing: Nanjing University of Science & Technology, 2012
李威力. 新型深海铝合金牺牲阳极研制及性能研究 [D]. 南京: 南京理工大学, 2012
26 Saidman S B, Bessone J B. Cathodic polarization characteristics and activation of aluminium in chloride solutions containing indium and zinc ions [J]. J. Appl. Electrochem., 1997, 27: 731
27 Gudić S, Radošević J, Smoljko I, et al. Cathodic breakdown of anodic oxide film on Al and Al-Sn alloys in NaCl solution [J]. Electrochim. Acta, 2005, 50: 5624
28 Keir D S, Pryor M J, Sperry P R. Galvanic corrosion characteristics of aluminum alloyed with group IV metals [J]. J. Electrochem. Sci., 1967, 114: 777
29 Keir D S, Pryor M J, Sperry P R. The influence of ternary alloying additions on the galvanic behavior of aluminum-Tin Alloys [J]. J. Electrochem. Soc., 1969, 116: 319
30 Venugopal A, Veluchamy P, Selvam P, et al. X-Ray photoelectron spectroscopic study of the oxide film on an aluminum-tin alloy in 3.5% sodium chloride solution [J]. Corrosion, 1997, 53: 808
31 Salinas D R, Bessone J B. Electrochemical Behavior of Al-5%Zn-0.1%Sn sacrificial anode in aggressive media: influence of its alloying elements and the solidification structure [J]. Corrosion, 1991, 47: 665
32 El Shayeb H A, Abd El Wahab F M, Zein El Abedin S, et al. Electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions containing stannous ions [J]. Corros. Sci., 2001, 43: 655
33 He J G, Wen J B, Li X D. Effects of cerium on microstructure and electrochemical properties of Al-Zn-Sn sacrificial anodes [A]. International Conference on Advances in Materials and Manufacturing Processes [C]. Trans Tech Publications Ltd, 2011.
34 Han H M, Wang G W, Ren W. Electrochemical performance of sacrificial anodes in Al-Zn-Sn-Bi alloy with the addition of Ga and Ce [J]. Mater. Prot., 2012, 45(8): 7, 23
韩红民, 王国伟, 任 伟. Al-Zn-Sn-Bi系合金添加Ga, Ce后牺牲阳极的电化学性能 [J]. 材料保护, 2012, 45(8): 7, 23
35 Hou D L, Li D F, Han L, et al. Effect of lanthanum addition on microstructure and corrosion behavior of Al-Sn-Bi anodes [J]. J. Rare Earths, 2011, 29: 129
36 Zhang Y H, Yang M T, Zhang H B, et al. Electrochemical performance of Al-Zn-Sn-Ce sacrificial anode in alternating dry and wet environment [J]. Equip. Environ. Eng., 2023, 20(6): 75
张一晗, 杨美桐, 张海兵 等. Al-Zn-Sn-Ce牺牲阳极干湿交替环境电化学性能研究 [J]. 装备环境工程, 2023, 20(6): 75
37 Qi G T, Xiong W, Zhu W T. Effect of segregation on initiation of corrosion of aluminium sacrificial anode containing mischmetal [J]. Corros. Eng. Sci. Technol., 2011, 46: 458
38 Xiong W, Qi G T, Guo X P, et al. Anodic dissolution of Al sacrificial anodes in NaCl solution containing Ce [J]. Corros. Sci., 2011, 53: 1298
39 Liu X, Cheng K, Chen Q, et al. Effect of lanthanum content on the comprehensive electrochemical performance of aluminium alloy sacrificial anode in the marine [J]. J. Guangxi Acad. Sci., 2016, 32: 168
刘 欣, 程 坤, 陈琴 等. 镧含量对铝合金牺牲阳极海水综合电化学性能的影响 [J]. 广西科学院学报, 2016, 32: 168
40 Venugopal A, Raja V S. AC impedance study on the activation mechanism of aluminium by indium and zinc in 3.5% NaCl medium [J]. Corros. Sci., 1997, 39: 2053
41 Tamada A, Tamura Y. The electrochemical characteristics of aluminum galvanic anodes in an arctic seawater [J]. Corros. Sci., 1993, 34: 261
42 Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 186
徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为 [J]. 中国腐蚀与防护学报, 2008, 28: 186
[1] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[2] SHANG Xiaobiao, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[3] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[4] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[5] ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[6] HOU Juncai, LIANG Guojun, QIAO Jinhua, ZHANG Qiumei. LOW Mn CONTENT MAGNISIUM SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 2012, 32(5): 403-406.
[7] LI Weili, YAN Yonggui, CHEN Guang, MA Li. EFFECT OF ALLOY ELEMENTS ON ELECTROCHEMICAL PERFORMANCE OF ALUMINUM SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 2012, 32(2): 127-132.
[8] HOU Juncai, ZHANG Qiumei. CURRENT STATUS OF HIGH POTENTIAL MAGNESIUM SACRIFICIAL ANODES[J]. 中国腐蚀与防护学报, 2011, 31(2): 81-85.
[9] . EFFECT OF MAGNESIUM ON MICROSTRUCTURE ANDPERFORMANCE OF CONTAINING RE ALUMINUM ANODE[J]. 中国腐蚀与防护学报, 2001, 21(4): 220-224 .
No Suggested Reading articles found!