|
|
|
| Natural Passivation Behavior of Pre-rusted Steel Rebar with Mill Scale in Curing Stage of Concrete |
LIU Guoqiang1( ), ZHANG Dongfang1,2,3( ), CHEN Haoxiang1, FAN Zhihong1,2,3 |
1.Key Laboratory of Harbor & Marine Structure Durability Technology, Ministry of Transport, CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China 2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China 3.National Observation and Research Station of Material Corrosion and Structural Safety of Hong Kong-Zhuhai-Macao Bridge in Guangdong, Zhuhai 519060, China |
|
Cite this article:
LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong. Natural Passivation Behavior of Pre-rusted Steel Rebar with Mill Scale in Curing Stage of Concrete. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 505-511.
|
|
|
Abstract A mill scale may form on the steel surface during hot rolling process, which exhibits a certain degree of anti-corrosion effect. When a large number of steel bars are used in a construction project, most of them may be naturally exposed to atmosphere for a long time, and thus the mill scale will turn into a loose and porous yellow-brown rust scale due to atmospheric corrosion. In order to understand the nature of the passivation behavior of pre-corroded steel rebars with mill scale during the concrete curing process, the electrochemical behavior of HRB400 rebars with mill scale before (bare bar) and after being atmospherically pre-corroded for 3 months (pre-corroded bar) was comparatively assessed in simulated concrete pore solution by means of open-circuit potential measurement, electrochemical impedance spectroscopy, dynamic potential polarization curve, Mott-Schottky curve and XPS. The results show that the type of rebars can be completely passivated in the simulated concrete pore solution, whilst their surface all reached stability within 5 d. But the passivation effect and corrosion resistance of pre-corroded rebars are slightly worse than those of the bare rebars. The changes in surface composition of the two kind rebars before and after passivation are mainly due to the significant decrease in Fe(II) oxides, while significant increase in Fe(III) oxides and hydroxyl oxides, and the excellent passivation effect and corrosion resistance of the bare rebars compared with the pre-corroded rebars are due to the lower Fe(II) oxide content and higher Fe(III) compound content after passivation.
|
|
Received: 05 August 2023
32134.14.1005.4537.2023.241
|
|
|
| Fund: National Key R&D Program of China(2019YFB1600700) |
Corresponding Authors:
ZHANG Dongfang, E-mail: zhangdf8@mail.sysu.edu.cn
|
| 1 |
Jin W L, Zhao Y X. Durability of Concrete Structures[M]. 2nd ed. Beijing: Science Press, 2014: 15
|
|
金伟良, 赵羽习. 混凝土结构耐久性[M]. 2版. 北京: 科学出版社, 2014: 15
|
| 2 |
Hou B R. Marine Reinforced Concrete Corrosion and Repair Reinforcement Technology[M]. Beijing: Science Press, 2012: 1
|
|
侯保荣. 海洋钢筋混凝土腐蚀与修复补强技术[M]. 北京: 科学出版社, 2012: 1
|
| 3 |
Hou B R. The Cost of Corrosion in China[M]. Beijing: Science Press, 2017: 497
|
|
侯保荣. 中国腐蚀成本[M]. 北京: 科学出版社, 2017: 497
|
| 4 |
Ke W. Investigation Report on Corrosion in China[M]. Beijing: Chemical Industry Press, 2003: 22
|
|
柯 伟. 中国腐蚀调查报告[M]. 北京: 化学工业出版社, 2003: 22
|
| 5 |
Morris W, Vazquez M. Corrosion of reinforced concrete exposed to marine environment[J]. Corros. Rev., 2002, 20: 469
doi: 10.1515/CORRREV.2002.20.6.469
|
| 6 |
Ahmad S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review[J]. Cem. Concr. Compos., 2003, 25: 459
doi: 10.1016/S0958-9465(02)00086-0
|
| 7 |
Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete-A review[J]. Cem. Concr. Res., 2009, 39: 1122
doi: 10.1016/j.cemconres.2009.08.006
|
| 8 |
Moser R D, Singh P M, Kahn L F, et al. Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions[J]. Corros. Sci., 2012, 57: 241
doi: 10.1016/j.corsci.2011.12.012
|
| 9 |
Zhang X F, Chen Y Q, Hu J M. Robust superhydrophobic SiO2/polydimethylsiloxane films coated on mild steel for corrosion protection[J]. Corros. Sci., 2020, 166: 108452
doi: 10.1016/j.corsci.2020.108452
|
| 10 |
Aslam R, Serdaroglu G, Zehra S, et al. Corrosion inhibition of steel using different families of organic compounds: Past and present progress[J]. J. Mol. Liq., 2022, 348: 118373
doi: 10.1016/j.molliq.2021.118373
|
| 11 |
An H Z, Xu Z Y, Meng G Z, et al. High corrosion resistance film on rebar by cerium modification[J]. J. Mater. Sci. Technol., 2021, 64: 73
doi: 10.1016/j.jmst.2019.09.033
|
| 12 |
González J A, Miranda J M, Otero E, et al. Effect of electrochemically reactive rust layers on the corrosion of steel in a Ca(OH)2 solution[J]. Corros. Sci., 2007, 49: 436
doi: 10.1016/j.corsci.2006.04.014
|
| 13 |
Bensabra H, Azzouz N. Study of rust effect on the corrosion behavior of reinforcement steel using impedance spectroscopy[J]. Metall. Mater. Trans., 2013, 44A: 5703
|
| 14 |
Miranda J M, González J A, Cobo A, et al. Several questions about electrochemical rehabilitation methods for reinforced concrete structures[J]. Corros. Sci., 2006, 48: 2172
doi: 10.1016/j.corsci.2005.08.014
|
| 15 |
Yang Y Z, Nakamura H, Miura T, et al. Effect of corrosion-induced crack and corroded rebar shape on bond behavior[J]. Struct. Concr., 2019, 20: 2171
doi: 10.1002/suco.v20.6
|
| 16 |
Choi Y S, Yi S T, Kim M Y, et al. Effect of corrosion method of the reinforcing bar on bond characteristics in reinforced concrete specimens[J]. Constr. Build. Mater., 2014, 54: 180
doi: 10.1016/j.conbuildmat.2013.12.065
|
| 17 |
Lee H S, Noguchi T, Tomosawa F. Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion[J]. Cem. Concr. Res., 2002, 32: 1313
doi: 10.1016/S0008-8846(02)00783-4
|
| 18 |
Al-tayyib A J, Khan M S, Allam I M, et al. Corrosion behavior of pre-rusted rebars after placement in concrete[J]. Cem. Concr. Res., 1990, 20: 955
doi: 10.1016/0008-8846(90)90059-7
|
| 19 |
Maslehuddin M, Al-Zahrani M M, Al-Dulaijan S U, et al. Effect of steel manufacturing process and atmospheric corrosion on the corrosion-resistance of steel bars in concrete[J]. Cem. Concr. Compos., 2002, 24: 151
doi: 10.1016/S0958-9465(01)00035-X
|
| 20 |
Novak P, Mala R, Joska L. Influence of pre-rusting on steel corrosion in concrete[J]. Cem. Concr. Res., 2001, 31: 589
doi: 10.1016/S0008-8846(01)00459-8
|
| 21 |
Avila-Mendoza J, Flores J M, Castillo U C. Effect of superficial oxides on corrosion of steel reinforcement embedded in concrete[J]. Corrosion, 1994, 50: 879
doi: 10.5006/1.3293478
|
| 22 |
Shang B H, Ma Y T, Meng M J, et al. Characterisation of passive film on HRB400 steel rebar in curing stage of concrete[J]. Chin. J. Mater. Res., 2019, 33: 659
doi: 10.11901/1005.3093.2019.068
|
|
商百慧, 马元泰, 孟美江 等. 混凝土养护期间HRB400钢筋钝化行为研究[J]. 材料研究学报, 2019, 33: 659
doi: 10.11901/1005.3093.2019.068
|
| 23 |
Wang M L, Sun Y P, Chen L, et al. Study on passive behavior of corrosion-resistant steel bars containing Cr in simulated high-alkaline concrete pore solution[J]. Acta Metall. Sin., 2023, DOI: 10.11900/0412.1961.2023.00203
|
|
王慕亮, 孙玉朋, 陈 磊 等. 含Cr耐蚀钢筋在模拟高碱性混凝土孔隙液中的钝化行为[J]. 金属学报, 2023, DOI: 10.11900/0412.1961.2023.00203
|
| 24 |
Yuan X W. Study on natural passivation and depassivaation behavior of stainless steel in simulated concrete pore solution[D]. Hefei: University of Science and Technology of China, 2021
|
|
苑旭雯. 模拟混凝土孔隙液中不锈钢自然钝化及脱钝行为研究[D]. 合肥: 中国科学技术大学, 2021
|
| 25 |
Shi J J, Sun W. Equivalent circuits fitting of electrochemical impedance spectroscopy for corrosion of reinforcing steel in concrete[J]. Corros. Sci. Prot. Technol., 2011, 23: 387
|
|
施锦杰, 孙 伟. 等效电路拟合钢筋锈蚀行为的电化学阻抗谱研究[J]. 腐蚀科学与防护技术, 2011, 23: 387
|
| 26 |
Shi J J, Ming J, Wang D Q, et al. Influence of atmospheric pre-rusting on corrosion behavior of low-alloy rebar in simulated concrete pore solution[J]. J. Build. Mater., 2017, 20: 180
|
|
施锦杰, 明 静, 王丹芊 等. 大气预锈对混凝土模拟液中低合金钢筋腐蚀行为的影响[J]. 建筑材料学报, 2017, 20: 180
|
| 27 |
Cen S B, Chen H, Liu Y, et al. Effect of CeO2 on corrosion behavior of WC-12Co coatings by high velocity oxygen fuel[J]. Acta Metall. Sin., 2016, 52: 1441
|
|
岑升波, 陈 辉, 刘 艳 等. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响[J]. 金属学报, 2016, 52: 1441
doi: 10.11900/0412.1961.2016.00031
|
| 28 |
Hamadou L, Kadri A, Benbrahim N. Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy[J]. Appl. Surf. Sci., 2005, 252: 1510
doi: 10.1016/j.apsusc.2005.02.135
|
| 29 |
Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes[M]. New York: Plenum Press, 1980
|
| 30 |
Macdonald D D. The point defect model for the passive state[J]. J. Electrochem. Soc., 1992, 139: 3434
doi: 10.1149/1.2069096
|
| 31 |
Lu X Y, Lin W, Li Y J. Passivation of rebar with mill scale and stains under anodic polarization[J]. J. Build. Mater., 2015, 18: 988
|
|
路新瀛, 林 玮, 李源晋. 阳极极化下带热轧皮和生锈钢筋的可钝化性[J]. 建筑材料学报, 2015, 18: 988
|
| 32 |
Li Y J. Chemical stability of rebar with mill scale in simulated concrete pore solutions[D]. Beijing: Tsinghua University, 2016
|
|
李源晋. 带轧皮钢筋在模拟混凝土孔溶液中的化学稳定性研究[D]. 北京: 清华大学, 2016
|
| 33 |
McCafferty E. Introduction to Corrosion Science[M]. New York: Springer, 2010: 95
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|