Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (1): 159-166    DOI: 10.11902/1005.4537.2023.064
Current Issue | Archive | Adv Search |
Preparation of Phosphate Coatings on Ti-alloy and Their Corrosion Behavior Beneath Salt-mixture in Water Vapor Flow at 650oC
LI Jiancheng1, ZHAO Jing2, XIE Xin3, WANG Jinlong1(), CHEN Minghui1, WANG Fuhui1
1.Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Nuclear Power Institute of China, Chengdu 610213, China
3.Shipbuilding Technology Research Institute (The 11th Institute of China State Shipbuilding Corporation), Shanghai 200032, China
Cite this article: 

LI Jiancheng, ZHAO Jing, XIE Xin, WANG Jinlong, CHEN Minghui, WANG Fuhui. Preparation of Phosphate Coatings on Ti-alloy and Their Corrosion Behavior Beneath Salt-mixture in Water Vapor Flow at 650oC. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 159-166.

Download:  HTML  PDF(13262KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Phosphate coatings, composed of silica sol modified Al(H2PO4)3, ceramic fillers and additives, are prepared and then applied on Ti-6Al-4V alloy, which are further characterized by means of XRD and Fourier transform infrared spectrometer, as well as corrosion test beneath deposits of salt-mixture in vapor flow at 650oC. The results show that silica sol can promote the formation of glass phase while the phosphate coating curing. When the mass ratio of silica sol to Al(H2PO4)3 reaches 1∶1, the mixture of silica sol to Al(H2PO4)3 may producea film of complete glass phase which ensures the formation a completely dense phosphate coating. The modified phosphate coating provides excellent corrosion resistance to salt-mixture in vapor flow at 650oC, and the chemical stability of the film and filler is the vital factor of the corrosion resistance of the modified coating. The coating is still dense after 100 h of corrosion at 650oC in such environment, and rare corrosion products of elements of the matrix alloy appears. As one filler of small amount, the Al flakes and their corrosion products are arranged parallel to the matrix in the coating, which can effectively prevent the diffusion of harmful ions such as Cl- to the matrix, meanwhile which can react with Na2SO4 so that inhibit the intrusion of molten salt into the coating and the corrosion of Ti-alloy matrix.

Key words:  phosphate coating      modify      Ti-alloy      high temperature corrosion     
Received:  10 March 2023      32134.14.1005.4537.2023.064
ZTFLH:  TG174  
Corresponding Authors:  WANG Jinlong, E-mail: wangjinlong@mail.neu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.064     OR     https://www.jcscp.org/EN/Y2024/V44/I1/159

GroupAl(H2PO4)3Silica sol
PSi37525
PSi26733
PSi15050
Table 1  Components of three film-forming materials
Fig.1  Schematic diagram of high-temperature vapor corrosion test device
Fig.2  Infrared absorption spectra of three film-forming materials
Fig.3  X-ray diffraction patterns of PSi3, PSi2, PSi1 film formers
Fig.4  Surface (a) and cross-sectional (b) morphologies of the as-prepared silica-sol modified phosphate coating, and EDS elemental mappings on the cross section (c)
Fig.5  XRD pattern of the as-prepared silica-sol modified phosphate coating
Fig.6  Macroscopic morphologies of Ti-6Al-4V alloy samples without (a, c) and with (b, d) silica-sol modified phosphate coating before (a, b) and after (c, d) exposure for 100 h at 650oC in the environment of water vapor and molten salt
Fig.7  Kinetic curves of Ti-6Al-4V alloy specimens without and with silica-sol modified phosphate coating during 100 h corrosion at 650oC in the environment of water vapor and molten salt
Fig.8  XRD pattern of silica-sol modified phosphate coating after corrosion for 100 h at 650oC in the environment of water vapor and molten salt
Fig.9  Surface (a) and cross-sectional (b) morphologies of silica-sol modified phosphate coating after corrosion at 650oC for 100 h in the environment of water vapor and molten salt, and EDS elemental mappings on the cross section (c)
1 Ardo F M, Lim J W, Ramli A, et al. A review in redressing challenges to produce sustainable hydrogen from microalgae for aviation industry [J]. Fuel, 2022, 330: 125646
doi: 10.1016/j.fuel.2022.125646
2 Zeng C, Stringer L C, Lv T Y. The spatial spillover effect of fossil fuel energy trade on CO2 emissions [J]. Energy, 2021, 223: 120038
doi: 10.1016/j.energy.2021.120038
3 Cloete S, del Pozo C A, Álvaro Á J. System-friendly process design: optimizing blue hydrogen production for future energy systems [J]. Energy, 2022, 259: 124954
doi: 10.1016/j.energy.2022.124954
4 Pérez F J, Castañeda S I. Study of oxyhydroxides formation on P91 ferritic steel and slurry coated by Al in contact with Ar+80%H2O at 650oC by TG-Mass spectrometry [J]. Surf. Coat. Technol., 2007, 201: 6239
doi: 10.1016/j.surfcoat.2006.11.029
5 Ehlers J, Young D J, Smaardijk E J, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments [J]. Corros. Sci., 2006, 48: 3428
doi: 10.1016/j.corsci.2006.02.002
6 Othman N K, Othman N, Zhang J, et al. Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres [J]. Corros. Sci., 2009, 51: 3039
doi: 10.1016/j.corsci.2009.08.032
7 Sánchez L, Bolívar F J, Hierro M P, et al. Temperature dependence of the oxide growth on aluminized 9-12%Cr ferritic-martensitic steels exposed to water vapour oxidation [J]. Thin Solid Films, 2009, 517: 3292
doi: 10.1016/j.tsf.2009.01.031
8 Esmaeili Z, Loghman-Estarki M R, Ramezani M, et al. Toward hardening of NiCrAlY alloy by spark plasma sintering of NiCrAlY-nano Si3N4-graphite nanocomposite [J]. J. Alloy. Compd., 2020, 847: 155802
doi: 10.1016/j.jallcom.2020.155802
9 Reddy M, Prasad C D, Patil P, et al. Hot corrosion behavior of plasma-sprayed NiCrAlY/TiO2 and NiCrAlY/Cr2O3/YSZ cermets coatings on alloy steel [J]. Surf. Interfaces, 2021, 22: 100810
10 Zhang M M, Niu Y S, Xin L, et al. Studies on corrosion resistance of thick Ti/TiN multilayer coatings under solid NaCl-H2O-O2 at 450oC [J]. Ceram. Int., 2020, 46: 19274
doi: 10.1016/j.ceramint.2020.04.267
11 Zheng D Y, Zhu S L, Wang F H. The influence of TiAlN and enamel coatings on the corrosion behavior of Ti6Al4V alloy in the presence of solid NaCl deposit and water vapor at 450oC [J]. Surf. Coat. Technol., 2007, 201: 5859
doi: 10.1016/j.surfcoat.2006.10.038
12 Han R F, Tariq N U H, Li J Y, et al. A novel phosphate-ceramic coating for high temperature oxidation resistance of Ti65 alloys [J]. Ceram. Int., 2019, 45: 23895
13 Huang X L, Yu L, Dong Y S. Corrosion resistance of a novel ceria doped aluminum phosphate ceramic coating on cast Al-Si alloy by steam-assisted curing [J]. Corros. Sci., 2021, 182: 109256
doi: 10.1016/j.corsci.2021.109256
14 Wacławska I, Szumera M, Sułowska J. Structural characterization of zinc-modified glasses from the SiO2-P2O5-K2O-CaO-MgO system [J]. J. Alloy. Compd., 2016, 666: 352
doi: 10.1016/j.jallcom.2016.01.125
15 Sitarz M. Influence of modifying cations on the structure and texture of silicate-phosphate glasses [J]. J. Mol. Struct., 2008, 887: 237
doi: 10.1016/j.molstruc.2007.12.030
16 SzumeraM. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, raman and 31P MAS NMR spectroscopies [J]. Spectrochim. Acta, 2014, 130A: 1
17 Mahdy E A, Khattari Z Y, Salem W M, et al. Study the structural, physical, and optical properties of CaO-MgO-SiO2-CaF2 bioactive glasses with Na2O and P2O5 dopants [J]. Mater. Chem. Phys., 2022, 286: 126231
doi: 10.1016/j.matchemphys.2022.126231
18 Li C, Liu L D, He X, et al. Thermal behavior, structure, crystallization and solubility of the melt-derived SiO2-P2O5-Na2O-F-MO (M = Ca, Sr, Zn) glasses [J]. Ceram. Int., 2022, 48: 7796
doi: 10.1016/j.ceramint.2021.11.327
19 Oueslati-Omrani R, Hamzaoui A H. Effect of ZnO incorporation on the structural, thermal and optical properties of phosphate based silicate glasses [J]. Mater. Chem. Phys., 2020, 242: 122461
doi: 10.1016/j.matchemphys.2019.122461
20 Hussein S A, Roshdy R, El-sadek M S A, et al. Effect of Al2O3 on the structural, optical and mechanical properties of B2O3-CaO-SiO2-P2O5-Na2O glass system [J]. Optik, 2022, 250: 168281
doi: 10.1016/j.ijleo.2021.168281
21 Zhu Q G, Zhao G L, Jin J T, et al. The role of phosphate in the glass forming region, structure and mechanical properties for the SiO2-Al2O3-P2O5 system contains high-aluminum [J]. J. Non-Cryst. Solids, 2022, 583: 121464
doi: 10.1016/j.jnoncrysol.2022.121464
22 Sánchez-Enríquez J, Reyes-Gasga J. Obtaining Ca(H2PO4)2·H2O, monocalcium phosphate monohydrate, via monetite from brushite by using sonication [J]. Ultrason. Sonochem., 2013, 20: 948
doi: 10.1016/j.ultsonch.2012.10.019 pmid: 23219258
23 Frost R L, Xi Y F, Palmer S J. Are the ‘cave’ minerals archerite (K,NH4)H2PO4 and biphosphammite (K,NH4)H2PO4 identical? A molecular structural study [J]. J. Mol. Struct., 2011, 1001: 49
doi: 10.1016/j.molstruc.2011.06.015
[1] LIU Zhihao, LIU Guangming, HE Sifan, DONG Meng, LI Yu, LI Futian, ZHU Ting. High Temperature Corrosion Behavior of F22 Base Metal and Weld in Simulated Coastal Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[2] HU Xiongxin, ZHANG Xian, LIU Jing, WU Kaiming, LIN An. Development and Performance of Phosphate-based Protective Insulation Coating for Non-oriented Electrical Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[3] GUAN Yu, LIU Guangming, ZHANG Minqiang, LIU Huanhuan, LIU Zhihao, GONG Bingbing. High Temperature Corrosion Behavior of Sanicro 25 Steel in High-sulfur Coal Ash/simulated Flue Gas[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[4] WANG Minghao, WANG Huan, LIU Rui, MENG Fandi, LIU Li, WANG Fuhui. Research on Image Recognition for NiCrAlY Coating/N5 High-temperature Alloy System Based on Deep Learning Method[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[5] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[6] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[7] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[8] LI Rui, CUI Yu, LIU Li, FAN Lei, MENG Fandi, WANG Fuhui. Corrosion Behavior of Ti60 Alloy in Fog of NaCl Solution at 600 ℃[J]. 中国腐蚀与防护学报, 2021, 41(5): 595-601.
[9] CHEN Tuchun, XIANG Junhuai, JIANG Longfa, XIONG Jian, BAI Lingyun, XU Xunhu, XU Xincheng. High-temperature Corrosion Behavior of Q235 Steel in Oxidizing Atmosphere Containing Chlorine[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[10] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[11] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[12] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[13] Mingming ZHANG,Li XIN,Xueyong DING,Shujiang GENG,Shenglong ZHU,Fuhui WANG. Corrosion Resistance of Alternately Multilayered Coating Ti/TiAlN on Ti-alloy Ti-6Al-4V Beneath a Solid NaCl Film in Atmosphere of Water Vapor and Oxygen at 600 ℃[J]. 中国腐蚀与防护学报, 2017, 37(1): 29-35.
[14] Yan LI,Jintao LU,Zhen YANG,Ming ZHU,Yuefeng GU. Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[15] HUANG Bensheng,YIN Wenfeng,WANG Xiaohong,SHI Yijun. Corrosion Behavior of Steels Used in Making Crude Oil Distillation Unit in High Temperature Crude Oil Fractions[J]. 中国腐蚀与防护学报, 2013, 33(5): 377-382.
No Suggested Reading articles found!