|
|
Histamine-modified Epoxy Resin and its Effect on Properties of Organic Coatings |
CAO Jingyi1, LI Jing2, YIN Wenchang1, MENG Fandi2( ), LIU Li2 |
1.Unit 92228, People's Liberation Army, Beijing 100072, China 2.Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeasten University, Shenyang 110819, China |
|
Cite this article:
CAO Jingyi, LI Jing, YIN Wenchang, MENG Fandi, LIU Li. Histamine-modified Epoxy Resin and its Effect on Properties of Organic Coatings. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 151-158.
|
Abstract To solve the problem of poor adhesion of the coating/metal interface in deep-sea environments, active epoxy resin (ZA-EP) was prepared by grafting histamine onto the epoxy resin E44 molecular chain, which can facilitate the formation of chemical bonds with metal substrate. Histamine heteroatoms in ZA-EP can form a shared lone pair electron with the vacant orbital of iron/iron oxide, which can promote the formation of the complex of Fe2+ ions with the resin, thus improving the interfacial bonding strength between the coating and the metal substrate. Compared with the ordinary epoxy coating, the adhesion of the coating containing active resin was significantly improved: for example, the adhesion of epoxy coating increased from 6.02 MPa to 15.36 MPa after the addition of 3% ZA-EP. In addition, the test results in the simulated deep-sea water under alternating pressure show that the saturation water absorption of the 3% ZA-EP/EP coating is the lowest, only 1.6% after one cycle test in 3.5%NaCl solution (by high static pressure 3.5 MPa for 12 h + constant pressure 0.1 MPa for 12 h). The EIS results after 3 cycle test (72 h) showed that the impedance of the 3%ZA-EP/EP coating remained stable. In other words, histamine modification may facilitate the formation of a chemical bond at the coating/metal interface, enhances the adhesion of the coating, thereby, the ZA-EP/EP coating has a good protective performance.
|
Received: 24 August 2023
32134.14.1005.4537.2023.266
|
|
Fund: National Natural Science Foundation of China(U20A20233) |
Corresponding Authors:
MENG Fandi, E-mail: fandimeng@mail.neu.edu.cn
|
1 |
Hu B. China's deep-sea strategy and marine power road [J]. Frontiers, 2017, (18): 14
|
|
胡 波. 中国的深海战略与海洋强国建设 [J]. 人民论坛·学术前沿, 2017, (18): 12
|
2 |
Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
|
|
郭为民, 孙明先, 邱 日 等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313
|
3 |
Guo W M, Li W J, Chen G Z. Corrosion testing in the deep ocean [J]. Equip. Environ. Eng., 2006, 3(1): 10
|
|
郭为民, 李文军, 陈光章. 材料深海环境腐蚀试验 [J]. 装备环境工程, 2006, 3(1): 10
|
4 |
Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
|
|
高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
doi: 10.11902/1005.4537.2021.034
|
5 |
Wang T Y, Zhang Z G, Lu W Z, et al. Effect of alternating pressure on electrochemical behavior of solvent-free epoxy coating in simulated ultra-deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 929
|
|
王腾宇, 张正贵, 陆卫中 等. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为 [J]. 中国腐蚀与防护学报, 2022, 42: 929
doi: 10.11902/1005.4537.2022.133
|
6 |
Liu L, Cui Y, Li Y, et al. Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure [J]. Electrochim. Acta, 2012, 62: 42
doi: 10.1016/j.electacta.2011.11.067
|
7 |
Liu Y, Wang J W, Liu L, et al. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure [J]. Corros. Sci., 2013, 74: 59
doi: 10.1016/j.corsci.2013.04.012
|
8 |
Tian W L, Liu L, Meng F D, et al. The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure [J]. Corros. Sci., 2014, 86: 81
doi: 10.1016/j.corsci.2014.04.038
|
9 |
Tian W L, Meng F D, Liu L, et al. The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure [J]. Prog. Org. Coat., 2015, 82: 101
|
10 |
Liu R, Liu L, Meng F D, et al. Finite element analysis of the water diffusion behaviour in pigmented epoxy coatings under alternating hydrostatic pressure [J]. Prog. Org. Coat., 2018, 123: 168
|
11 |
Liu R, Liu L, Tian W L, et al. Finite element analysis of effect of interfacial bubbles on performance of epoxy coatings under alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64: 233
doi: 10.1016/j.jmst.2019.10.008
|
12 |
Zhang D Y, Su Y L. Study on the inter-coat adhesion of anti-corrosive coating matching system [J]. Shanghai Coat., 2023, 61(3): 28
|
|
张东亚, 苏雅丽. 防腐蚀涂层配套体系的层间附着力研究 [J]. 上海涂料, 2023, 61(3): 28
|
13 |
van Dam J P B, Abrahami S T, Yilmaz A, et al. Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface [J]. Int. J. Adhes. Adhes., 2020, 96: 102450
doi: 10.1016/j.ijadhadh.2019.102450
|
14 |
Chen P, Wang Y, Li J C, et al. Adhesion and erosion properties of epoxy resin composite coatings reinforced with fly ash cenospheres and short glass fibers [J]. Prog. Org. Coat., 2018, 125: 489
|
15 |
Shen L, Li Y W, Zheng J, et al. Modified epoxy acrylate resin for photocurable temporary protective coatings [J]. Prog. Org. Coat., 2015, 89: 17
|
16 |
Zhou Y, Su L H Z, Chen J, et al. Effect of silanization pre-treatment on adhesive force and early protective properties of water-based polyurethane coating on surface of magnesium alloy [J]. Mater. Prot., 2022, 55(3): 1
|
|
周 勇, 苏李惠子, 陈 俊 等. 镁合金表面硅烷化预处理对水性聚氨酯涂层附着力和早期防护性能的影响 [J]. 材料保护, 2022, 55(3): 1
|
17 |
Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
|
18 |
Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
|
|
师 超, 邵亚薇, 熊 义 等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
|
19 |
Ghosh A K, Bertels E, Goderis B, et al. Optimisation of wet chemical silane deposition to improve the interfacial strength of stainless steel/epoxy [J]. Appl. Surf. Sci., 2015, 324: 134
doi: 10.1016/j.apsusc.2014.10.075
|
20 |
Sun P, Dong J, Huang H, et al. The effect of adhesion promoter on the performance of epoxy coatings on the surface of aluminum cathode plate [J]. Paint Coat. Ind., 2021, 51(12): 14
|
|
孙 鹏, 董 劲, 黄 惠 等. 附着力促进剂对铝阴极板表面环氧涂层性能的影响 [J]. 涂料工业, 2021, 51(12): 14
|
21 |
Cai J M, Guan L, Li Y. Effect of surface treatment on galvanic corrosion of 6061 Al-alloy and DC01 carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 281
|
|
蔡建敏, 关 蕾, 李 雨. 不同表面防护处理的6016铝合金/DC01碳钢电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 281
doi: 10.11902/1005.4537.2021.048
|
22 |
Wang X H, Zhang B S, Li Z H, et al. The corrosion inhibition performance of polyaspartic acid/histamine compounds [J]. Henan Sci., 2021, 39: 1229
|
|
王晓慧, 张本尚, 黎振华 等. 聚天冬氨酸/组胺化合物的缓蚀性能研究 [J]. 河南科学, 2021, 39: 1229
|
23 |
Kaştaş G, K, Paşaoğlu H, MagneticKarabulut B., structural and computational studies on transition metal complexes of a neurotransmitter, histamine [J]. J. Mol. Struct., 2011, 1000: 39
doi: 10.1016/j.molstruc.2011.05.047
|
24 |
Liu X L, Shao Y W, Zhang Y J, et al. Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating-II. Effect of grinding temperature [J]. Corros. Sci., 2015, 90: 463
doi: 10.1016/j.corsci.2014.04.016
|
25 |
Hu S B, Liu R, Liu L, et al. Effect of hydrostatic pressure on the galvanic corrosion of 90/10 Cu-Ni alloy coupled to Ti6Al4V alloy [J]. Corros. Sci., 2020, 163: 108242
doi: 10.1016/j.corsci.2019.108242
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|