Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1126-1132    DOI: 10.11902/1005.4537.2022.390
Current Issue | Archive | Adv Search |
Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer
CHEN Xiaohan(), BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang
Marine Chemical Research Institute Co., Ltd., State Key Laboratory of Marine Coatings, Qingdao 266071, China
Download:  HTML  PDF(7002KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A surface-tolerant epoxy anticorrosive primer was prepared on the surface of Sa2 grade steel. Its solid content was up to 80%, the drying speed was only 4 h, and the average adhesion was up to 10 MPa. The coating keeps intact with no cracking and no spallation after outdoor exposure for 5 a, and has excellent corrosion resistance to acid, alkali and salt solution. The electrochemical performance and corrosion mechanism of the coating were studied by means of FTIR, EIS and three-dimensional video microscope. The results showed that the impedance of the coating reached 1010 Ω·cm2 after 2400 h seawater immersion, which showed excellent corrosion resistance. The impedance of the coating decreased first and then increased with the extension of immersion time. The densification of the coating is due to the cross-linking of epoxy resin and polyamide curing, so that can act as a good barrier to the corrosive medium. During the middle and late stage of the corrosion process, the stable complex formed by the reaction of zinc phosphate pigment with the rust on steel surface, can prevent the infiltration of corrosive medium, which may be the reason why the coating has excellent corrosion resistance and high tolerance to the substrate surface.

Key words:  epoxy anticorrosive primer      low surface treatment      electrochemical impedance      corrosion resistance     
Received:  07 December 2022      32134.14.1005.4537.2022.390
ZTFLH:  TG174  
Fund: Postdoctoral Innovation Project of Shandong Province of China and Postdoctoral Applied Research Project of Qingdao of China
Corresponding Authors:  CHEN Xiaohan, E-mail: 2906612880@qq.com   

Cite this article: 

CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1126-1132.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.390     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1126

Fig.1  Macro topography of the coating: (a) adhesion failure diagram, (b) immersed in 10%H2SO4 for 30 d, (c) immersed in 10%NaOH for 30 d, (d) after 5 a of outdoor exposure,(e) after 500 h salt spray test
Fig.2  Nyquist (a) and Bode (b) diagrams of the coating soaked in seawater for 2400 h
Fig.3  Equivalent circuit model at the initial stage (a), and the middle and late stage (b) of coating immersion
Fig.4  FTIR spectra of C-1 coating and components A and B
Fig.5  Surface morphology of C-1 coating before (a1, b1) and after (a2, b2) 2400 h seawater immersion
Fig.6  Anticorrosion mechanism of C-1 coating
1 Brezoi D V. Anticorrosive polymeric coatings [J]. Sci. Bull, 2022, 18: 33
2 El-Shamy O A A, Deyab M A. Novel anticorrosive coatings based on nanocomposites of epoxy, chitosan, and silver [J]. Mater. Lett., 2023, 330: 133298
doi: 10.1016/j.matlet.2022.133298
3 Assad H, Fatma I, Kumar A. An overview of the application of graphene-based materials in anticorrosive coatings [J]. Mater. Lett., 2023, 330: 133287
doi: 10.1016/j.matlet.2022.133287
4 Liu L, Shao Z Y, Jia T Y, et al. Research progress on application of halloysite nanotubes for modification of smart anti-corrosion coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 523
刘 玲, 邵紫雅, 贾天越 等. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 523
5 Qu Z P, Tian X L, Wang Y T, et al. Research progress on corrosion behavior and key influencing factors for structural materials of waste power plant boiler [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 839
曲作鹏, 田欣利, 王永田 等. 垃圾电站锅炉腐蚀速度及关键影响因素研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 839
doi: 10.11902/1005.4537.2021.245
6 Wang H K. Worldwide corrosion day and thinking of corrosion prevention & control [J]. Plat. Finish., 2013, 35(5): 19
王洪奎. 世界腐蚀日及腐蚀防控的思考 [J]. 电镀与精饰, 2013, 35(5): 19
7 Zhou M X, Wu J, Fan Z B, et al. Current situation and prospect of on-line monitoring technology for atmospheric corrosion testing of metallic materials [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 38
周梦鑫, 吴 军, 樊志彬 等. 大气腐蚀在线监测技术研究现状与展望 [J]. 中国腐蚀与防护学报, 2023, 43: 38
doi: 10.11902/1005.4537.2022.027
8 Wang T Y, Zhang Z G, Lu W Z, et al. Effect of alternating pressure on electrochemical behavior of solvent-free epoxy coating in simulated ultra-deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 929
王腾宇, 张正贵, 陆卫中 等. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为 [J]. 中国腐蚀与防护学报, 2022, 42: 929
doi: 10.11902/1005.4537.2022.133
9 Lin M C, Wang Y F, Wang R G, et al. The synergetic effect of tannic acid as adhesion promoter in electrodeposition of polypyrrole on copper for corrosion protection [J]. Mater. Chem. Phys., 2023, 294: 126991
doi: 10.1016/j.matchemphys.2022.126991
10 Cao Y H, Wang J J, Chen K F, et al. A comparative study of chloride adsorption ability and corrosion protection effect in epoxy coatings of various layered double hydroxides [J]. Coatings, 2022, 12: 1631
doi: 10.3390/coatings12111631
11 Li T, Zhao S R, Sheng X X, et al. In-situ growth and excellent corrosion protection properties of molybdenum dioxide/boron nitride heterojunction composites [J]. Prog. Org. Coat., 2023, 174: 107289
12 Al-Masoud M A, Khalaf M M, Heakal F E T, et al. Advanced Protective Films Based on Binary ZnO-NiO@polyaniline Nanocomposite for Acidic Chloride Steel Corrosion: An Integrated Study of Theoretical and Practical Investigations [J]. Polymers, 2022, 14: 4734
doi: 10.3390/polym14214734
13 Zhou S X, Li W J, Ai Z Y, et al. Research progress of inorganic silicate zinc-rich anticorrosive coating [J]. Mater. Prot., 2022, 55(8): 1
周双喜, 李伟杰, 艾志勇 等. 无机硅酸盐富锌防腐涂料的研究进展 [J]. 材料保护, 2022, 55(8): 1
14 Zhang G Q, Yu X, Liu H J. Design and application of hot water immersion testing for anticorrosion coating of deep-water pipeline [J]. Paint. Coat. Ind., 2022, 52(9): 81
张国庆, 于 萱, 刘洪娟. 深水管道防腐涂层耐热水浸泡试验设计及应用研究 [J]. 涂料工业, 2022, 52(9): 81
15 Cao J Y, Zang B L, Cao B X, et al. Influence of chemical bonding interface of modified basalt/epoxy coating on its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1009
曹京宜, 臧勃林, 曹宝学 等. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1009
doi: 10.11902/1005.4537.2021.312
16 Zhang Y B, Qin Z H, Lei X J, et al. Waterborne epoxy primer and its preparation method [J]. Paint. Coat. Ind., 2020, 50(5): 41
张育波, 秦中海, 雷晓进 等. 水性环氧底漆及其制备方法 [J]. 涂料工业, 2020, 50(5): 41
17 Jun J, Sabau A S, Stephens M S. Corrosion behavior of laser-interference structured AA2024 coated with a chromate-containing epoxy primer [J]. Corrosion, 2021, 77: 577
doi: 10.5006/3717
18 Li J Y, Dai D Y, Qian C, et al. Corrosion behavior of PANI nanofiber/modified GO/waterborne epoxy composite coating on stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 156
李建永, 代殿宇, 钱 程 等. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 156
doi: 10.11902/1005.4537.2020.271
19 Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
高浩东, 崔 宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
doi: 10.11902/1005.4537.2021.034
20 Zhang Z H, Han D S, Zhang A L. Study on preparation surface-tolerant coating on high-chromium steel [J]. Plat. Finish., 2021, 43(3): 47
张芷豪, 韩东山, 张爱黎. 高铬钢低表面处理涂料制备研究 [J]. 电镀与精饰, 2021, 43(3): 47
21 Cao J Y, Yang Y G, Fang Z G, et al. Failure behavior of fresh water tank coating in different water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 209
曹京宜, 杨延格, 方志刚 等. 淡水舱涂层在不同水环境中的失效行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 209
doi: 10.11902/1005.4537.2021.008
22 Wang Q J, Wu L H, Wang Y. New applications of low surface treatment coatings [J]. Mod. Paint Finish., 2021, 24(9): 23
王庆军, 武林华, 王 煜. 低表面处理涂料新应用 [J]. 现代涂料与涂装, 2021, 24(9): 23
23 Sun W S, Yu S R, Gao S, et al. Molecular dynamics simulation of water molecule diffusion in graphene-reinforced epoxy resin anticorrosive coatings [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 411
孙伟松, 于思荣, 高 嵩 等. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟 [J]. 中国腐蚀与防护学报, 2021, 41: 411
doi: 10.11902/1005.4537.2020.227
24 Wang Q, Guo C Q, Shao Y S, et al. Development of environmently-friendly general primer with low surface treatment and its application [J]. Mod. Paint Finish., 2021, 24(7): 7
王 侨, 郭常青, 邵亚诗 等. 环保型低表面处理环氧通用底漆的研制及应用 [J]. 现代涂料与涂装, 2021, 24(7): 7
25 Yu X, Zhang G Q, Huang X J. Effect of cutback surface preparation on coating performance of steel pipeline [J]. Paint. Coat. Ind., 2018, 48(3): 73
于 萱, 张国庆, 黄秀娟. 钢质管道节点处表面处理对涂层性能的影响 [J]. 涂料工业, 2018, 48(3): 73
26 Zhang Z, Xiong J P, Cao J Y, et al. EIS study of organic coatings failure behavior under the different surface pretreatment levels [J]. New Technol. New Process, 2008, (10): 90
张 智, 熊金平, 曹京宜 等. 不同表面处理等级下有机涂层失效行为的EIS研究 [J]. 新技术新工艺, 2008, (10): 90
27 Chen Y, Xu L M, Chen Y F, et al. Influence of different surface treatments on coating properties of transmission tower [J]. Corros. Prot., 2014, 35: 823
陈 云, 徐利民, 陈懿夫 等. 不同表面处理对输电线路铁塔涂层性能的影响 [J]. 腐蚀与防护, 2014, 35: 823
28 Yue X G. Development and application of Polymastiff epoxy ethane high tolerance anticorrosive primer [J]. Yunnan Chem. Technol., 2020, 47(5): 98
岳兴国. 聚獒合环氧乙烷低表面处理防腐底漆的研发和应用 [J]. 云南化工, 2020, 47(5): 98
29 Chang D Y, Huang X F, Li Y D. Analysis of current situation and development direction of low surface-treatment coatings [J]. China Coat., 2016, 31(2): 7
常道阳, 黄晓峰, 李运德. 浅谈低表面处理涂料的现状及发展方向 [J]. 中国涂料, 2016, 31(2): 7
30 Han Z Z, Guo X J, Duan S M, et al. Preparation of epoxy coating with good tolerance to surface pretreatment [J]. Paint. Coat. Ind., 2016, 46(4): 61
韩忠智, 郭晓军, 段绍明 等. 低表面处理环氧涂料的研究 [J]. 涂料工业, 2016, 46(4): 61
31 Rahmani M H, Naderi R, Mahdavian M. Pulse-reverse electrodeposition of a conversion coating based on zinc cation and 3-nitrobenzoic acid on carbon steel to enhance adhesion and protective function of epoxy coating [J]. Prog. Org. Coat., 2022, 172: 107124
32 Sun P, Dong J, Huang H, et al. The effect of adhesion promoter on the performance of epoxy coatings on the surface of aluminum cathode plate [J]. Paint. Coat. Ind., 2021, 51(12): 14
孙 鹏, 董 劲, 黄 惠 等. 附着力促进剂对铝阴极板表面环氧涂层性能的影响 [J]. 涂料工业, 2021, 51(12): 14
33 Liu Y B, Zhang B, Wang Z T, et al. Study on the rapid evaluation of electrochemical impedance spectroscopy of offshore wind turbine [J]. Environ. Technol., 2017, 35(6): 6
刘扬波, 张 斌, 王钊桐 等. 海上风电塔筒涂层电化学阻抗谱快速评价技术研究 [J]. 环境技术, 2017, 35(6): 6
34 Huang Q A, Li W H, Tang Z P, et al. Fundamentals of electrochemical impedance spectroscopy [J]. Chin. J. Nat., 2020, 42: 12
doi: 10.3969/j.issn.0253-9608.2020.01.002
黄秋安, 李伟恒, 汤哲鹏 等. 电化学阻抗谱基础 [J]. 自然杂志, 2020, 42: 12
35 Scantlebury J D, Galić K. The application of AC impedance to study the performance of lacquered aluminium specimens in acetic acid solution [J]. Prog. Org. Coat, 1997, 31: 201
doi: 10.1016/S0300-9440(97)00005-2
36 Burduhos-Nergis D P, Vasilescu G D, Burduhos-Nergis D D, et al. Phosphate coatings: EIS and SEM applied to evaluate the corrosion behavior of steel in fire extinguishing solution [J]. Appl. Sci., 2021, 11: 7802
doi: 10.3390/app11177802
37 Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19: 99
张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19: 99
38 Zhang S H, Tan Y, Liang K X. In-situ impedance investigation of 304 stainless steel between pit growth and repassivation state [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 130
张胜寒, 檀 玉, 梁可心. 电化学阻抗谱法对304不锈钢孔蚀生长和再钝化阶段的原位研究 [J]. 中国腐蚀与防护学报, 2011, 31: 130
39 Yang H, Lu W Z, Li J, et al. Research progress in degradation process of anti-corrosion coatings in water containing environments [J]. Corros. Sci. Prot. Technol., 2012, 24: 452
杨 海, 陆卫中, 李 京 等. 水环境中防腐涂层失效机理研究进展 [J]. 腐蚀科学与防护技术, 2012, 24: 452
[1] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[3] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[4] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[5] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[6] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[7] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[8] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[9] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[10] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[11] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[12] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[13] HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[14] HU Yunfei, CAO Xiangkang, MA Xiaoze, PAN Jinglong, CAI Guangyi, DONG Zehua. Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
[15] WANG Hanmin, HUANG Feng, YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing. Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
No Suggested Reading articles found!