|
|
Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer |
CHEN Xiaohan( ), BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang |
Marine Chemical Research Institute Co., Ltd., State Key Laboratory of Marine Coatings, Qingdao 266071, China |
|
|
Abstract A surface-tolerant epoxy anticorrosive primer was prepared on the surface of Sa2 grade steel. Its solid content was up to 80%, the drying speed was only 4 h, and the average adhesion was up to 10 MPa. The coating keeps intact with no cracking and no spallation after outdoor exposure for 5 a, and has excellent corrosion resistance to acid, alkali and salt solution. The electrochemical performance and corrosion mechanism of the coating were studied by means of FTIR, EIS and three-dimensional video microscope. The results showed that the impedance of the coating reached 1010 Ω·cm2 after 2400 h seawater immersion, which showed excellent corrosion resistance. The impedance of the coating decreased first and then increased with the extension of immersion time. The densification of the coating is due to the cross-linking of epoxy resin and polyamide curing, so that can act as a good barrier to the corrosive medium. During the middle and late stage of the corrosion process, the stable complex formed by the reaction of zinc phosphate pigment with the rust on steel surface, can prevent the infiltration of corrosive medium, which may be the reason why the coating has excellent corrosion resistance and high tolerance to the substrate surface.
|
Received: 07 December 2022
32134.14.1005.4537.2022.390
|
|
Fund: Postdoctoral Innovation Project of Shandong Province of China and Postdoctoral Applied Research Project of Qingdao of China |
Corresponding Authors:
CHEN Xiaohan, E-mail: 2906612880@qq.com
|
1 |
Brezoi D V. Anticorrosive polymeric coatings [J]. Sci. Bull, 2022, 18: 33
|
2 |
El-Shamy O A A, Deyab M A. Novel anticorrosive coatings based on nanocomposites of epoxy, chitosan, and silver [J]. Mater. Lett., 2023, 330: 133298
doi: 10.1016/j.matlet.2022.133298
|
3 |
Assad H, Fatma I, Kumar A. An overview of the application of graphene-based materials in anticorrosive coatings [J]. Mater. Lett., 2023, 330: 133287
doi: 10.1016/j.matlet.2022.133287
|
4 |
Liu L, Shao Z Y, Jia T Y, et al. Research progress on application of halloysite nanotubes for modification of smart anti-corrosion coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 523
|
|
刘 玲, 邵紫雅, 贾天越 等. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 523
|
5 |
Qu Z P, Tian X L, Wang Y T, et al. Research progress on corrosion behavior and key influencing factors for structural materials of waste power plant boiler [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 839
|
|
曲作鹏, 田欣利, 王永田 等. 垃圾电站锅炉腐蚀速度及关键影响因素研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 839
doi: 10.11902/1005.4537.2021.245
|
6 |
Wang H K. Worldwide corrosion day and thinking of corrosion prevention & control [J]. Plat. Finish., 2013, 35(5): 19
|
|
王洪奎. 世界腐蚀日及腐蚀防控的思考 [J]. 电镀与精饰, 2013, 35(5): 19
|
7 |
Zhou M X, Wu J, Fan Z B, et al. Current situation and prospect of on-line monitoring technology for atmospheric corrosion testing of metallic materials [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 38
|
|
周梦鑫, 吴 军, 樊志彬 等. 大气腐蚀在线监测技术研究现状与展望 [J]. 中国腐蚀与防护学报, 2023, 43: 38
doi: 10.11902/1005.4537.2022.027
|
8 |
Wang T Y, Zhang Z G, Lu W Z, et al. Effect of alternating pressure on electrochemical behavior of solvent-free epoxy coating in simulated ultra-deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 929
|
|
王腾宇, 张正贵, 陆卫中 等. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为 [J]. 中国腐蚀与防护学报, 2022, 42: 929
doi: 10.11902/1005.4537.2022.133
|
9 |
Lin M C, Wang Y F, Wang R G, et al. The synergetic effect of tannic acid as adhesion promoter in electrodeposition of polypyrrole on copper for corrosion protection [J]. Mater. Chem. Phys., 2023, 294: 126991
doi: 10.1016/j.matchemphys.2022.126991
|
10 |
Cao Y H, Wang J J, Chen K F, et al. A comparative study of chloride adsorption ability and corrosion protection effect in epoxy coatings of various layered double hydroxides [J]. Coatings, 2022, 12: 1631
doi: 10.3390/coatings12111631
|
11 |
Li T, Zhao S R, Sheng X X, et al. In-situ growth and excellent corrosion protection properties of molybdenum dioxide/boron nitride heterojunction composites [J]. Prog. Org. Coat., 2023, 174: 107289
|
12 |
Al-Masoud M A, Khalaf M M, Heakal F E T, et al. Advanced Protective Films Based on Binary ZnO-NiO@polyaniline Nanocomposite for Acidic Chloride Steel Corrosion: An Integrated Study of Theoretical and Practical Investigations [J]. Polymers, 2022, 14: 4734
doi: 10.3390/polym14214734
|
13 |
Zhou S X, Li W J, Ai Z Y, et al. Research progress of inorganic silicate zinc-rich anticorrosive coating [J]. Mater. Prot., 2022, 55(8): 1
|
|
周双喜, 李伟杰, 艾志勇 等. 无机硅酸盐富锌防腐涂料的研究进展 [J]. 材料保护, 2022, 55(8): 1
|
14 |
Zhang G Q, Yu X, Liu H J. Design and application of hot water immersion testing for anticorrosion coating of deep-water pipeline [J]. Paint. Coat. Ind., 2022, 52(9): 81
|
|
张国庆, 于 萱, 刘洪娟. 深水管道防腐涂层耐热水浸泡试验设计及应用研究 [J]. 涂料工业, 2022, 52(9): 81
|
15 |
Cao J Y, Zang B L, Cao B X, et al. Influence of chemical bonding interface of modified basalt/epoxy coating on its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1009
|
|
曹京宜, 臧勃林, 曹宝学 等. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1009
doi: 10.11902/1005.4537.2021.312
|
16 |
Zhang Y B, Qin Z H, Lei X J, et al. Waterborne epoxy primer and its preparation method [J]. Paint. Coat. Ind., 2020, 50(5): 41
|
|
张育波, 秦中海, 雷晓进 等. 水性环氧底漆及其制备方法 [J]. 涂料工业, 2020, 50(5): 41
|
17 |
Jun J, Sabau A S, Stephens M S. Corrosion behavior of laser-interference structured AA2024 coated with a chromate-containing epoxy primer [J]. Corrosion, 2021, 77: 577
doi: 10.5006/3717
|
18 |
Li J Y, Dai D Y, Qian C, et al. Corrosion behavior of PANI nanofiber/modified GO/waterborne epoxy composite coating on stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 156
|
|
李建永, 代殿宇, 钱 程 等. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 156
doi: 10.11902/1005.4537.2020.271
|
19 |
Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
|
|
高浩东, 崔 宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
doi: 10.11902/1005.4537.2021.034
|
20 |
Zhang Z H, Han D S, Zhang A L. Study on preparation surface-tolerant coating on high-chromium steel [J]. Plat. Finish., 2021, 43(3): 47
|
|
张芷豪, 韩东山, 张爱黎. 高铬钢低表面处理涂料制备研究 [J]. 电镀与精饰, 2021, 43(3): 47
|
21 |
Cao J Y, Yang Y G, Fang Z G, et al. Failure behavior of fresh water tank coating in different water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 209
|
|
曹京宜, 杨延格, 方志刚 等. 淡水舱涂层在不同水环境中的失效行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 209
doi: 10.11902/1005.4537.2021.008
|
22 |
Wang Q J, Wu L H, Wang Y. New applications of low surface treatment coatings [J]. Mod. Paint Finish., 2021, 24(9): 23
|
|
王庆军, 武林华, 王 煜. 低表面处理涂料新应用 [J]. 现代涂料与涂装, 2021, 24(9): 23
|
23 |
Sun W S, Yu S R, Gao S, et al. Molecular dynamics simulation of water molecule diffusion in graphene-reinforced epoxy resin anticorrosive coatings [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 411
|
|
孙伟松, 于思荣, 高 嵩 等. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟 [J]. 中国腐蚀与防护学报, 2021, 41: 411
doi: 10.11902/1005.4537.2020.227
|
24 |
Wang Q, Guo C Q, Shao Y S, et al. Development of environmently-friendly general primer with low surface treatment and its application [J]. Mod. Paint Finish., 2021, 24(7): 7
|
|
王 侨, 郭常青, 邵亚诗 等. 环保型低表面处理环氧通用底漆的研制及应用 [J]. 现代涂料与涂装, 2021, 24(7): 7
|
25 |
Yu X, Zhang G Q, Huang X J. Effect of cutback surface preparation on coating performance of steel pipeline [J]. Paint. Coat. Ind., 2018, 48(3): 73
|
|
于 萱, 张国庆, 黄秀娟. 钢质管道节点处表面处理对涂层性能的影响 [J]. 涂料工业, 2018, 48(3): 73
|
26 |
Zhang Z, Xiong J P, Cao J Y, et al. EIS study of organic coatings failure behavior under the different surface pretreatment levels [J]. New Technol. New Process, 2008, (10): 90
|
|
张 智, 熊金平, 曹京宜 等. 不同表面处理等级下有机涂层失效行为的EIS研究 [J]. 新技术新工艺, 2008, (10): 90
|
27 |
Chen Y, Xu L M, Chen Y F, et al. Influence of different surface treatments on coating properties of transmission tower [J]. Corros. Prot., 2014, 35: 823
|
|
陈 云, 徐利民, 陈懿夫 等. 不同表面处理对输电线路铁塔涂层性能的影响 [J]. 腐蚀与防护, 2014, 35: 823
|
28 |
Yue X G. Development and application of Polymastiff epoxy ethane high tolerance anticorrosive primer [J]. Yunnan Chem. Technol., 2020, 47(5): 98
|
|
岳兴国. 聚獒合环氧乙烷低表面处理防腐底漆的研发和应用 [J]. 云南化工, 2020, 47(5): 98
|
29 |
Chang D Y, Huang X F, Li Y D. Analysis of current situation and development direction of low surface-treatment coatings [J]. China Coat., 2016, 31(2): 7
|
|
常道阳, 黄晓峰, 李运德. 浅谈低表面处理涂料的现状及发展方向 [J]. 中国涂料, 2016, 31(2): 7
|
30 |
Han Z Z, Guo X J, Duan S M, et al. Preparation of epoxy coating with good tolerance to surface pretreatment [J]. Paint. Coat. Ind., 2016, 46(4): 61
|
|
韩忠智, 郭晓军, 段绍明 等. 低表面处理环氧涂料的研究 [J]. 涂料工业, 2016, 46(4): 61
|
31 |
Rahmani M H, Naderi R, Mahdavian M. Pulse-reverse electrodeposition of a conversion coating based on zinc cation and 3-nitrobenzoic acid on carbon steel to enhance adhesion and protective function of epoxy coating [J]. Prog. Org. Coat., 2022, 172: 107124
|
32 |
Sun P, Dong J, Huang H, et al. The effect of adhesion promoter on the performance of epoxy coatings on the surface of aluminum cathode plate [J]. Paint. Coat. Ind., 2021, 51(12): 14
|
|
孙 鹏, 董 劲, 黄 惠 等. 附着力促进剂对铝阴极板表面环氧涂层性能的影响 [J]. 涂料工业, 2021, 51(12): 14
|
33 |
Liu Y B, Zhang B, Wang Z T, et al. Study on the rapid evaluation of electrochemical impedance spectroscopy of offshore wind turbine [J]. Environ. Technol., 2017, 35(6): 6
|
|
刘扬波, 张 斌, 王钊桐 等. 海上风电塔筒涂层电化学阻抗谱快速评价技术研究 [J]. 环境技术, 2017, 35(6): 6
|
34 |
Huang Q A, Li W H, Tang Z P, et al. Fundamentals of electrochemical impedance spectroscopy [J]. Chin. J. Nat., 2020, 42: 12
doi: 10.3969/j.issn.0253-9608.2020.01.002
|
|
黄秋安, 李伟恒, 汤哲鹏 等. 电化学阻抗谱基础 [J]. 自然杂志, 2020, 42: 12
|
35 |
Scantlebury J D, Galić K. The application of AC impedance to study the performance of lacquered aluminium specimens in acetic acid solution [J]. Prog. Org. Coat, 1997, 31: 201
doi: 10.1016/S0300-9440(97)00005-2
|
36 |
Burduhos-Nergis D P, Vasilescu G D, Burduhos-Nergis D D, et al. Phosphate coatings: EIS and SEM applied to evaluate the corrosion behavior of steel in fire extinguishing solution [J]. Appl. Sci., 2021, 11: 7802
doi: 10.3390/app11177802
|
37 |
Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19: 99
|
|
张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19: 99
|
38 |
Zhang S H, Tan Y, Liang K X. In-situ impedance investigation of 304 stainless steel between pit growth and repassivation state [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 130
|
|
张胜寒, 檀 玉, 梁可心. 电化学阻抗谱法对304不锈钢孔蚀生长和再钝化阶段的原位研究 [J]. 中国腐蚀与防护学报, 2011, 31: 130
|
39 |
Yang H, Lu W Z, Li J, et al. Research progress in degradation process of anti-corrosion coatings in water containing environments [J]. Corros. Sci. Prot. Technol., 2012, 24: 452
|
|
杨 海, 陆卫中, 李 京 等. 水环境中防腐涂层失效机理研究进展 [J]. 腐蚀科学与防护技术, 2012, 24: 452
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|