Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 601-610    DOI: 10.11902/1005.4537.2022.259
Current Issue | Archive | Adv Search |
Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃
ZHOU Zhiping1, WU Dakang2, ZHANG Hongfu3, ZHANG Lei4, LI Mingxing3, ZHANG Zhixin5, ZHONG Xiankang5()
1.PetroChina Changqing Oilfield Company, Xi'an 710018, China
2.No. 12 Oil Production Plant of PetroChina Changqing Oilfield Company, Qingyang 745100, China
3.PetroChina Changqing Oilfield Company Oil and Gas Technology Research Institute, Xi'an 710018, China
4.No. 4 Gas Production Plant of PetroChina Changqing Oilfield Company, Xi'an 710016, China
5.School of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
Download:  HTML  PDF(7758KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this article, the tensile fracture behavior of L80 steel in air at 25-350 oC and its high-temperature and high-pressure corrosion behavior in CO2/H2S in an artificial formation water at 150-350 oC are investigated by means of mass loss measurement, scanning electron microscopy, X-ray photoelectron spectroscopy. The results suggest that the yield strength and tensile strength of L80 both appear to severe decline with the increasing temperature, while the decay of the former is significantly greater than that of the latter. Meanwhile, the tensile fracture mechanism of L80 steel changes from microporous aggregation with shear tearing at room temperature to a dominant microporous aggregation at high temperatures. The corrosion rate increases significantly with the increasing temperature, and the higher the temperature, the faster the increase rate. The bilayer structure of the corrosion products and their crystal morphology are markedly affected by temperature, and the percentage of FeS in the inner layer and the compactness of FeCO3 of the outer layer both increase with the increasing temperature. The results of the study may provide a reference for the evaluation of the adaptability of L80 oil casing for service in extreme conditions.

Key words:  high temperature      high-temperature tensile      fracture mechanism      high temperature and high pressure corrosion      corrosion products     
Received:  17 August 2022      32134.14.1005.4537.2022.259
ZTFLH:  TG174  
Fund: Major Science and Technology Project of PetroChina(2021DJ5203)
Corresponding Authors:  ZHONG Xiankang, E-mail: zhongxk@swpu.edu.cn

Cite this article: 

ZHOU Zhiping, WU Dakang, ZHANG Hongfu, ZHANG Lei, LI Mingxing, ZHANG Zhixin, ZHONG Xiankang. Tensile Property of L80 Steel in Air at 25-350 ℃ and Its Corrosion Behavior in Simulated Casing Service Conditions at 150-350 ℃. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 601-610.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.259     OR     https://www.jcscp.org/EN/Y2023/V43/I3/601

Fig.1  Microstructure of L80 casing steel for testing: (a) low magnification, (b) high magnification
Fig.2  Tensile stress-strain curves of L80 steel at different temperatures in atmospheric environment
Fig.3  Variation of tensile strength (a) and plastic deformability (b) of L80 steel with temperature
Fig.4  Macro images of tensile fractures of L80 steel at 25 ℃ (a), 150 ℃ (b), 250 ℃ (c) and 350 ℃ (d)
Fig.5  Micro morphologies of the crack source areas of tensile fractures of L80 steel at 25 ℃ (a), 150 ℃ (b), 250 ℃ (c) and 350 ℃ (d)
Fig.6  Corrosion rates of L80 steel in the simulated conditions with different temperatures
Fig.7  Macro morphologies of L80 steel before and after 7 d corrosion at different temperatures
Fig.8  SEM morphologies of L80 steel after corrosion for 7 d at 150 ℃ (a), 200 ℃ (b), 250 ℃ (c), 300 ℃ (d) and 350 ℃ (e)
Fig.9  SEM morphologies of L80 steel after corrosion for 7 d at 150 ℃ (a), 200 ℃ (b), 250 ℃ (c), 300 ℃ (d) and 350 ℃ (e) and then removing corrosion product films
Fig.10  XPS spectra of corrosion products formed on L80 steel after corrosion for 7 d at 150 ℃ (a, f), 200 ℃ (b, g), 250 ℃ (c, h), 300 ℃ (d, i) and 350 ℃ (e, j)
1 Yang Y. New progress and next development directions of heavy oil development technologies in Shengli oilfield [J]. Petrol. Geol. Recov. Effic., 2021, 28(6): 1
杨 勇. 胜利油田稠油开发技术新进展及发展方向 [J]. 油气地质与采收率, 2021, 28(6): 1
2 Jiang Q, You H J, Pan J J, et al. Preliminary discussion on current status and development direction of heavy oil recovery technologies [J]. Spec. Oil Gas Reserv., 2020, 27(6): 30
doi: 10.3969/j.issn.1006-6535.2020.06.004
蒋 琪, 游红娟, 潘竟军 等. 稠油开采技术现状与发展方向初步探讨 [J]. 特种油气藏, 2020, 27(6): 30
3 Li W Z. Evaluation and development countermeasures for nonproducing reserves of heavy oil reservoirs in Shengli oilfield [J]. Spec. Oil Gas Reserv., 2021, 28(2): 63
doi: 10.3969/j.issn.1006-6535.2021.02.009
李伟忠. 胜利油田稠油未动用储量评价及动用对策 [J]. 特种油气藏, 2021, 28(2): 63
doi: 10.3969/j.issn.1006-6535.2021.02.009
4 Li J C, Wang L, Ding B D, et al. Present situation and development trend of the thermal/chemical flooding technology of heavy oil [J]. J. Xi'an Shiyou Univ. (Nat. Sci. Ed.), 2010, 25(4): 36
李锦超, 王 磊, 丁保东 等. 稠油热/化学驱油技术现状及发展趋势 [J]. 西安石油大学学报(自然科学版), 2010, 25(4): 36
5 Liu D L, Gu J J. Present situation and development trend of heavy oil thermal recovery technology [J]. Contemp. Chem. Ind., 2018, 47: 1445
刘栋梁, 顾继俊. 稠油热采技术现状及发展趋势 [J]. 当代化工, 2018, 47: 1445
6 Wang Q Y, He H J. Technical progress and novel methods of foreign thermal recovery [J]. Sino-Global Energy, 2013, 18(8): 33
王秋语, 何胡军. 国外热力采油技术进展及新方法 [J]. 中外能源, 2013, 18(8): 33
7 Li Z K. Damage mechanism of casing for thermal recovery of heavy oil well and casing coupon technology experiment [J]. Spec. Oil Gas Reserv., 2021, 28(2): 171
doi: 10.3969/j.issn.1006-6535.2021.02.026
李宗锟. 稠油热采井套管损坏机理及套管挂片技术实验 [J]. 特种油气藏, 2021, 28(2): 171
doi: 10.3969/j.issn.1006-6535.2021.02.026
8 Qian F, Gao D L. A mechanical model for predicting casing creep load in high temperature wells [J]. J. Nat. Gas Sci. Eng., 2011, 3: 530
doi: 10.1016/j.jngse.2011.04.003
9 Zhu G Y, Zhang S C, Huang H P, et al. Induced H2S formation during steam injection recovery process of heavy oil from the Liaohe Basin, NE China [J]. J. Pet. Sci. Eng., 2010, 71: 30
doi: 10.1016/j.petrol.2010.01.002
10 Lin R Y, Song D P, Wang X W, et al. Experimental determination of in situ hydrogen sulfide production during thermal recovery processes [J]. Energy Fuels, 2016, 30: 5323
doi: 10.1021/acs.energyfuels.5b02646
11 Xiao F, Li B C, Wang D J, et al. Mechanical analysis on casing damage and discussion on dynamic mechanism [J]. Petrol. Geol. Recov. Effic., 2008, 15(5): 98
肖 斐, 李邦超, 王德军 等. 套管损坏的力学分析及动力学机制探讨 [J]. 油气地质与采收率, 2008, 15(5): 98
12 Jia J H. Casing failure mechanism of thermal production wells and casing strength optimization design [J]. J. Saf. Sci. Technol., 2011, 7(9): 121
贾江鸿. 热采井套损机理及套管强度优化设计 [J]. 中国安全生产科学技术, 2011, 7(9): 121
13 Lu L J, Feng S B, Zhang B. Method for designing casing stem strength in heavy-oil steam injection wells [J]. J. Oil Gas Technol., 2009, 31: 364
路利军, 冯少波, 张 波. 稠油热采井套管柱强度设计方法研究 [J]. 石油天然气学报, 2009, 31: 364
14 Yu X F, Zheng H L, Liu S H. Casing plastic damage analysis considering non-uniform stress in thermal recovery well [J]. J. Plast. Eng., 2016, 23(3): 183
余雄风, 郑华林, 刘少胡. 耦合非均匀地应力的热采井套管塑性损伤分析 [J]. 塑性工程学报, 2016, 23(3): 183
15 Zhao M F, Fu A Q, Hu F T, et al. Corrosion behavior and life prediction of high grade OCTG in full-life-cycle environment of high temperature high pressure gas well [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 535
赵密锋, 付安庆, 胡芳婷 等. 高钢级油井管在高温高压气井全生命周期环境中的腐蚀行为及寿命预测 [J]. 中国腐蚀与防护学报, 2021, 41: 535
doi: 10.11902/1005.4537.2020.139
16 Wu Q L, Zhang Z H, Dong X M, et al. Corrosion behavior of low-alloy steel containing 1% chromium in CO2 environments [J]. Corros. Sci., 2013, 75: 400
doi: 10.1016/j.corsci.2013.06.024
17 Li Q, Zhang D P, Wang W, et al. Evaluation of actual corrosion status of L80 tubing steel and subsequent electrochemical and SCC investigation in lab [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 317
李 清, 张德平, 王 薇 等. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 317
18 Yu J, Zhang D P, Pan R S, et al. Electrochemical noise of stress corrosion cracking of P110 tubing steel in sulphur-containing downhole annular fluid [J]. Acta Metall. Sin., 2018, 54: 1399
doi: 10.11900/0412.1961.2018.00033
余 军, 张德平, 潘若生 等. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征 [J]. 金属学报, 2018, 54: 1399
19 Sun J B, Sun C, Lin X Q, et al. Effect of chromium on corrosion behavior of P110 steels in CO2-H2S environment with high pressure and high temperature [J]. Materials, 2016, 9: 200
doi: 10.3390/ma9030200
20 Zhao G X, Lv X H. Effect of temperature on the corrosion rate of oil tubing and casing [J]. J. Xi'an Shiyou Univ. (Nat. Sci. Ed.), 2008, 23(4): 74
赵国仙, 吕祥鸿. 温度对油套管用钢腐蚀速率的影响 [J]. 西安石油大学学报(自然科学版), 2008, 23(4): 74
21 Zhang Q, Li A Q, Wen J B, et al. Effect of temperature on CO2/H2S corrosion rate of oil tube steels [J]. Mater. Prot., 2004, 37(4): 38
张 清, 李全安, 文九巴 等. 温度对油管钢CO2/H2S腐蚀速率的影响 [J]. 材料保护, 2004, 37(4): 38
22 Sui Y Y, Sun J B, Sun C, et al. Effect of temperature and CO2/H2S partial pressure ratio on corrosion behaviors of BG90SS tubing steel [J]. Trans. Mater. Heat Treat., 2014, 35(suppl. 2) : 102
隋义勇, 孙建波, 孙 冲 等. 温度和CO2/H2S分压比对BG90SS钢管腐蚀行为的影响 [J]. 材料热处理学报, 2014, 35(): 102
23 Gao H L, Zhang X Y, Feng Y R, et al. Development and current situation of pipeline steels [J]. Mater. Mech. Eng., 2009, 33(10): 1
高惠临, 张骁勇, 冯耀荣 等. 管线钢的研究进展 [J]. 机械工程材料, 2009, 33(10): 1
24 Miura E, Yoshimi K, Hanada S. Oxygen-molybdenum interaction with dislocations in Nb-Mo single crystals at elevated temperatures [J]. Acta Mater., 2002, 50: 2905
doi: 10.1016/S1359-6454(02)00115-5
25 Ha K F. Microscopic Theory of Mechanical Properties of Metals [M]. Beijing: Science Press, 1983
哈宽富. 金属力学性质的微观理论 [M]. 北京: 科学出版社, 1983
26 Wu Y H, Li Y T, Qi H P. High temperature tensile perforamnce of 42CrMo casting ring blank [J]. Spec. Cast. Nonferrous Alloys, 2017, 37: 1288
武永红, 李永堂, 齐会萍. 42CrMo铸造环坯高温拉伸性能 [J]. 特种铸造及有色合金, 2017, 37: 1288
doi: 10.15980/j.tzzz.2017.12.003
27 Li R Q, Zhang Y, Tian B H, et al. Hot deformation behavior and dynamic recrystallization of Cu-Cr-Zr-Ce alloy at elevated temperature [J]. Trans. Mater. Heat Treat., 2013, 34(suppl. 2) : 10
李瑞卿, 张 毅, 田保红 等. Cu-Cr-Zr-Ce合金高温热变形行为及动态再结晶 [J]. 材料热处理学报, 2013, 34(): 10
28 Ebrahimi G R, Keshmiri H, Momeni A, et al. Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni [J]. Mater. Sci. Eng., 2011, 528A: 7488
29 Jiang W, Li Y Z, Shu Y X, et al. Investigation of metallic ductile fracture by void-based meso-damage model [J]. Eng. Mech., 2014, 31(10): 27
姜 薇, 李亚智, 束一秀 等. 基于微孔贯通细观损伤模型的金属韧性断裂分析 [J]. 工程力学, 2014, 31(10): 27
30 Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield criteria and flow rules for porous ductile media [J]. J. Eng. Mater. Technol., 1977, 99: 2
doi: 10.1115/1.3443401
31 Ingham B, Ko M, Kear G, et al. In situ synchrotron X-ray diffraction study of surface scale formation during CO2 corrosion of carbon steel at temperatures up to 90°C [J]. Corros. Sci., 2010, 52: 3052
doi: 10.1016/j.corsci.2010.05.025
32 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
[1] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[2] GUO Tao, HUANG Feng, HU Qian, LIU Jing. Oxidation Kinetics of 9Ni Steel Billet at High Temperature[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[3] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[4] LIU Zhihao, LIU Guangming, HE Sifan, DONG Meng, LI Yu, LI Futian, ZHU Ting. High Temperature Corrosion Behavior of F22 Base Metal and Weld in Simulated Coastal Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[5] QU Zuopeng, ZHANG Beibei, XIE Guangxiao, YANG Yuxi, WANG Yongtian, TIAN Xinli, WANG Haijun. Research Progress on Protection Technology for Waste Incinerator Heating Surfaces[J]. 中国腐蚀与防护学报, 2023, 43(3): 452-459.
[6] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[7] LI Han, LIU Yuanhai, ZHAO Lianhong, CUI Zhongyu. Corrosion Behavior of 300M Ultra High Strength Steel in Simulated Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[8] REN Yanjie, LV Yunlei, DAI Ting, GUO Xiaohui, CHEN Jian, ZHOU Libo, QIU Wei, NIU Yan. Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[9] XIE Leipeng, CHEN Minghui, WANG Jinlong, WANG Fuhui. High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[10] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[11] ZHANG Qin, LIANG Taosha, WANG Wen, ZHAO Langlang, JIANG Yuefeng. Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[12] XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[13] ZHAO Guoxian, WANG Yingchao, ZHANG Siqi, SONG Yang. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[14] LIU Baoping, ZHANG Zhiming, WANG Jianqiu, HAN En-Hou, KE Wei. Review of Stress Corrosion Crack Initiation of Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[15] GUAN Yu, LIU Guangming, ZHANG Minqiang, LIU Huanhuan, LIU Zhihao, GONG Bingbing. High Temperature Corrosion Behavior of Sanicro 25 Steel in High-sulfur Coal Ash/simulated Flue Gas[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
No Suggested Reading articles found!