Please wait a minute...
J Chin Soc Corr Pro  2008, Vol. 28 Issue (5): 265-270     DOI:
Research Articles Current Issue | Archive | Adv Search |
The effect of the sulfate reducing bacteria biofilm on phase boundary between HSn70-1AB copper alloy and solution
北京交通大学市政环境工程系
Download:  PDF(1540KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Growth characteristics of Sulfate Reducing Bacteria (SRB) was tested. The SRB was in logarithmic-phase growth during the first three days and turn into stationary-phase growth since then. Atomic Force Microscopy (AFM) and Electrochemical Impedance Spectroscopy, respectively (EIS) have been used to investigate the effect of biofilm on phase boundary of HSn70-1 AB copper alloy and solution. The study using AFM showed that SRB cells adhered to the surface of copper alloy and the biofilm formed during three days immergence were observed. Roughness of three-day-old biofilm formed on the alloys was 44.7nm, while roughness of the biofilm decreased to 25.8nm after 14 days immergence. The simulative date of EIS spectrum revealed that transfer resistance (Re) of the electric double layer on the alloy surface increases with the immergence prolonged. Furthermore, capacitance value (Yp) of oxidation film on the alloy surface changed seriously, which indicated the structure of oxidation film was impacted.
Key words:  Sulfate Reducing Bacteria (SRB)      biofilm       Atomic Force Microscopy (AFM)      Electrochemical Impedance S     
Received:  04 January 2007     
ZTFLH:  TG174  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. The effect of the sulfate reducing bacteria biofilm on phase boundary between HSn70-1AB copper alloy and solution. J Chin Soc Corr Pro, 2008, 28(5): 265-270 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2008/V28/I5/265

[1]Videla H A.Biological corrosion and biofilm effects on metal biode-terioration[J].Biodeter.Res,1989,2:39-50
[2]Lee W,Characklis W G.Corrosion of mild steel under anaerobicbiofilm[J].Corrosion,1993,49(3):186-199
[3]Wagner D,Chamberlain A H L.Microbiologically influenced cop-per corrosion in potable water with emphasis on practical rele-vance[J].Biodegrad.,1997,8:177-187
[4]Liu J,Xu L M,Zheng J S.A study on corrosion behavior underthe biofilm of sulfate-reducing bacteria on Cu-Zn alloy[J].J.Chin.Soc.Corros.Prot.,2001,21(6):345-351(刘靖,许立铭,郑家.硫酸盐还原菌生物膜下Cu-Zn合金的腐蚀研究[J].中国腐蚀与防护学报,2001,21(6):345-351)
[5]Beer D,Stoodley P,Roe F,et al.Effects of biofilm structures onoxygen distribution and mass transport[J].Biotechnol.Bioeng.,1994,43:1131-1138
[6]Lee W,Beer D.Oxygen and pH microprofiles above corrosion mildsteel covered with a biofilm[J].Biofoul.,1995,8:273-280
[7]Little B J,Wagner P A,Ray R I,et al.Biofilms:an ESEM eval-uation of artefacts introduced during SEM preparation[J].J.Ind.Microbiol.,1991,8:213-222
[8]Sutton N A,Hughes N,Handley P.A comparison of conventionalSEM techniques,low temperature SEM and the electroscan wetscanning electron microscope to study the structure of a biofilm ofStreptococcus crista CR3[J].J.Appl.Bacteriol.,1994,76(5):448-454
[9]Walker J T,Keevil C W.Study of microbial biofilms using lightmicroscopy techniques[J].Int.Biodeterior.Biodegrad.,1994,34:223-236
[10]Xu L C,Chan K Y,Fang H H P.Application of atomic forcemicroscopy in the study of microbiologically influenced corrosion[J].Mater.Charact.,2002,48:195-203
[11]Steele A,Goddard D T,Beech I B.Atomic force microscopystudy of the biodeterioration of stainless steel in the presence ofbacterial biofilms[J].Int.Biodeterior.Biodegrad.,1994,34(1):35-46
[12]Franklin M J,Nivens D E,Guckert J B,et al.Effect of electro-chemical impedance spectroscopy on microbial biofilm cell num-bers,viability and activity[J].Corrosion,1991,47(7):519-522
[13]Mu J,Zhang Z M.A new method of isolation and purification ofanaerobic bacteria:culture dish sandwich anaerobic method[J].J.Shanxi Univ.(Nat.Sci.Ed.),1998,21(4):363-367(穆军,张肇铭.一种分离纯化厌氧细菌的新方法--平皿夹层厌氧法[J].山西大学学报,1998,21(4):363-367)
[14]Postgate J R.The Sulfate-reducing Bacteria[M].2nd ed.,Cam-bridge:Cambridge University Press,1984,32
[15]Beech I B,Smith J R,Steele A A,et al.The use of atomic forcemicroscopy for studying interactions of bacterial biofilms with sur-faces[J].Colloids Surf.,2002,23(2-3):B231-247
[16]Li J,Xu Z Y,Du Y L,et al.A comparative study on sulfatereducing bacteria influenced corrosion of copper alloys[J].J.Chin.Soc.Corros.Prot.,2007,27(6):342-347(李进,许兆义,杜一立等.硫酸盐还原菌对铜合金生物腐蚀的比较研究[J].中国腐蚀与防护学报,2007,27(6):342-347)
[17]Beech I B,Gaylarde C C,Smith J J,et al.Extracellularpolysaccharides from Desulfovibrio desulfuricans and Pseudomonasfluorescens in the presence of mild and stainless steel[J].Appl.Microbiol.Biotechnol.,1991,35(1):65-71
[18]Hu M P.Corrosion Electric Chemistry[M].Beijing:China Metal-lurgical Industry Press,1991:51-104(胡茂圃.腐蚀电化学[M].北京:冶金工业出版社,1991:51-104
[19]Shalaby H M,Hasan A A,Al-Sabti F.Effect of inorganic sulfideand bacterial micro fouling on corrosion of 70/30 copper/nickel al-loy in seawater[J].Corrosion98.San Diego,CA;USA;22-27Mar.1998:295/1-295/16
[20]Cao C N.Corrosion Electrochemistry[M].Beijing:Chemical In-dustry Press,2004(曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004)
[21]Lee A K,Newman D K,Microbial iron respiration:impacts oncorrosion processes[J].Appl.Mocrobiol.Biotechnol.2003,62(2-3):134-139
[22]Ismail K M,Jayaraman A,Wood T K,et al.The influence ofbacteria on the passive film stability of 304 stainless steel[J].Electrochim.Acta,1999,44(26):4685-4692
[23]Sheng X X,Ting Y P,Simo O P.The influence of sulphate-re-ducing bacteria biofilm on the corrosion of stainless steel AISI 316[J].Corros.Sci.,2007,49(5):2159-2176
[24]Keresate Z,Telegdi J,Beczner J,et al.The influence of bio-cides on the microbiologically influenced corrosion of mild steeland brass[J].Electrochim.Acta,1998,43(1-2):77-85
[1] CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu. Interaction between Friction-wear and Corrosion in Special Environment[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[2] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[3] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[4] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[5] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[6] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[7] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[8] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[9] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[10] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[12] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[13] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[14] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] Yalin CHEN, Wei ZHANG, Qi WANG, Jia WANG. Debonding Mechanism of Organic Coating with Artificial Defect in Areas Nearby Water-line in 3.5%NaCl Solution by WBE Technique-II[J]. 中国腐蚀与防护学报, 2017, 37(4): 322-328.
No Suggested Reading articles found!