Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 867-872    DOI: 10.11902/1005.4537.2021.293
Current Issue | Archive | Adv Search |
Electrochemical Performance of Sacrificial Anodes in Alternating Depth and Shallowness of Seawater Environments
ZHANG Haibing, ZHANG Yihan, MA Li(), XING Shaohua, DUAN Tigang, YAN Yonggui
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
Download:  HTML  PDF(6684KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the previous research work, Sn, Bi, Ti, Sb and other alloying elements were added to the Al-Zn-Ga-Si low-potential sacrificial anode material to improve its overall performance of the anode. By conducting the electrochemical performance test in the conventional seawater environment, a sacrificial anode material with a low driving potential, that meets the requirements, is selected from a variety of prepared anode materials. The selected Al-Zn-Ga-Si-Sb anodes with good comprehensive electrochemical performance were further assessed in a simulated alternating depth and shallowness of seawater environment, especially in terms of its electrochemical performance, while the influence of Sb content on the electrochemical performance of the anode was also investigated through electrochemical performance test and three-dimensional video observation. The results show that the addition of an appropriate amount of Sb can promote the uniform activation and dissolution of the anode materials, therewith improve the activation performance of anodes in complex environments, and reduce the effect of local corrosion. When the Sb content is 0.5% (mass fraction), the comprehensive electrochemical performance of the anode is good and meets the requirements in accord with the general cathodic protection guidelines for high-strength steel. Thus, it may be expected that the Al-Zn-Ga-Si-0.5Sb sacrificial anodes can further be developed to meet the requirement for the high-strength steel cathodic protection in alternating depth and shallowness of seawater environments.

Key words:  alternating deep and shallow      aluminum alloy anode      electrochemistry      cathodic protection     
Received:  20 October 2021     
ZTFLH:  TG172  
Corresponding Authors:  MA Li     E-mail:  mal@sunrui.net
About author:  MA Li, E-mail: mal@sunrui.net

Cite this article: 

ZHANG Haibing, ZHANG Yihan, MA Li, XING Shaohua, DUAN Tigang, YAN Yonggui. Electrochemical Performance of Sacrificial Anodes in Alternating Depth and Shallowness of Seawater Environments. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 867-872.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.293     OR     https://www.jcscp.org/EN/Y2022/V42/I5/867

SampleOpen circuit potential / V vs SCEWorking potential / V vs SCEActual capacity / A·h·kg-1Current efficiency / %
1-0.956-0.701~-0.8042505.5684.70
2-0.904-0.720~-0.8162507.4284.77
3-0.882-0.707~-0.8672556.7386.43
4-0.876-0.713~-0.8272533.8785.66
5-0.865-0.700~-0.7972508.5484.81
6-0.863-0.695~-0.9682540.8785.90
7-0.840-0.710~-0.8062468.5983.45
8-1.038-0.691~-0.8032515.4385.04
9-0.906-0.712~-0.8122422.9281.91
10-0.956-0.735~-0.8132524.2285.34
11-0.961-0.746~-0.8062482.8783.94
12-1.063-0.743~-0.8042466.4983.38
Table 1  Test results of electrochemical performance of sacrificial anode
Fig.1  Dissolution morphologies of sacrificial anode in shallow sea environment: (a1) Al-Zn-Ga-Si-0.01Sn, (a2) Al-Zn-Ga-Si-0.03Sn, (a3) Al-Zn-Ga-Si-0.05Sn, (b1) Al-Zn-Ga-Si-0.05Bi, (b2) Al-Zn-Ga-Si-0.1Bi, (b3) Al-Zn-Ga-Si-0.2Bi, (c1) Al-Zn-Ga-Si-0.02Ti, (c2) Al-Zn-Ga-Si-0.04Ti, (c3) Al-Zn-Ga-Si-0.1Ti, (d1) Al-Zn-Ga-Si-0.1Sb, (d2) Al-Zn-Ga-Si-0.5Sb, (d3) Al-Zn-Ga-Si-1Sb
SampleEnvironmentOpen Circuit Potential/ V vs. SCEWorking Potential/ V vs. SCEActual capacity A·h·kg-1Current efficiency / %
10Shallow sea environemnt-0.956-0.735~-0.8132524.2285.34%
Deep sea environemnt-0.938-0.715~-0.8182584.1487.36%
Alternating deep and shallow environment-0.932-0.741~-0.8292526.3585.06%
11Shallow sea environemnt-0.961-0.746~-0.8062482.8783.94%
Deep sea environemnt-0.928-0.752~-0.8092516.7785.08%
Alternating deep and shallow environment-0.949-0.751~-0.8142522.1884.92%
12Shallow sea environemnt-1.063-0.743~-0.8042466.4983.38%
Deep sea environemnt-0.996-0.753~-0.8022488.3384.12%
Alternating deep and shallow environment-0.993-0.753~-0.8132493.2383.95%
Table 2  Electrochemical performance of Al-Zn-Ga-Si-Sb sacrificial anode
Fig.2  Al-Zn-Ga-Si-Sb sacrificial anode dissolution morphology and microscopic morphology in the alternating deep and shallow environment: (a) Al-Zn-Ga-Si-0.1Sb, (b) Al-Zn-Ga-Si-0.5Sb, (c) Al-Zn -Ga-Si-1Sb
Fig.3  Bode plots (a, b) and Nyquist plots (c) of Al-Zn-Ga-Si-0.5Sb sacrificial anode in alternating deep and shallow environments
Fig.4  Polarization curves of Al-Zn-Ga-Si-0.5Sb sacrificial anode in different environments
Fig.5  SKP spectrum of Al-Zn-Ga-Si-0.5Sb sacrificial anode surface
Fig.6  Microscopic dissolution morphology of Al-Zn-Ga-Si-0.5Sb sacrificial anode in alternating deep and shallow environments
Fig.7  XRD patterns of Al-Zn-Ga-Si-0.5Sb sacrificial anode corrosion products
1 Fernandez J. Retracted: Stress corrosion cracking of high strength stainless steels for use as strand in prestressed marine environment concrete construction [J]. Mater. Corros., 2015, 66: 1269
2 Billingham J, Sharp J V, Spurrier J, et al. Review of the performance of high strength steels used offshore [R]. Suffolk, UK: Health and Safety Executive, 2003: 111
3 Gao X X, Guo J Z, Zhang H B. Hydrogen embrittlement susceptibility of 1000 MPa grade high strength steel weldment [J]. Mater. Rev., 2017, 31(6): 93
doi: 10.1179/imr.1986.31.1.93
高心心, 郭建章, 张海兵. 1000 MPa级高强钢焊接件的氢脆敏感性研究 [J]. 材料导报, 2017, 31(6): 93
4 Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
5 Li W L, Yan Y G, Chen G, et al. Effect of alloy elements on electrochemical performance of aluminum sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 127
李威力, 闫永贵, 陈光 等. 合金元素对铝基牺牲阳极性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 127
6 Song Y H, Guo Z C, Fan A M, et al. Current state of research on sacrificial anode materials [J]. Corros. Sci. Prot. Technol., 2004, 16: 24
宋曰海, 郭忠诚, 樊爱民 等. 牺牲阳极材料的研究现状 [J]. 腐蚀科学与防护技术, 2004, 16: 24
7 Gurrappa I, Karnik J A. Effect on tin-activated aluminum-alloy anodes of the addition of bismuth [J]. Corros. Prev. Contr., 1994, 41: 117
8 Reding J T, Newport J J. The influence of alloying elements on aluminum anodes in sea water [J]. Mater. Prot., 1966, 5: 15
9 Ma L, Zeng H J, Yan Y G, et al. Effects of Ga content on electrochemical properties of Al-Ga sacrificial anodes [J]. Corros. Sci. Prot. Technol., 2009, 21: 125
马力, 曾红杰, 闫永贵 等. Ga含量对Al-Ga牺牲阳极电化学性能的影响 [J]. 腐蚀科学与防护技术, 2009, 21: 125
10 Pautasso J P, Le Guyader H, Debout V. Low voltage cathodic protection for high strength steels. Part 1: Definition of a new Aluminum galvanic anode material [A]. Corrosion 1998 [C]. San Diego, CA, 1996: 1
11 Pan D W, Gao X X, Ma L, et al. Cathodic protection criteria of high strength steel in simulated deep-sea environment [J]. Corros. Prot., 2016, 37: 225
潘大伟, 高心心, 马力 等. 模拟深海环境中高强钢的阴极保护准则 [J]. 腐蚀与防护, 2016, 37: 225
12 Ma J L, Wen J B, Lu X W, et al. Electrochemical impedance spectroscopy of aluminum alloy anode during corrosion process [J]. Corros. Prot., 2009, 30: 373
马景灵, 文九巴, 卢现稳 等. 铝合金阳极腐蚀过程的电化学阻抗谱研究 [J]. 腐蚀与防护, 2009, 30: 373
13 Ma J L, Wen J B. Corrosion and electrochemical performance of Al-Mg-Sn-Si-In alloy in different solutions [J]. Corros. Sci. Prot. Technol., 2015, 27: 425
马景灵, 文九巴. Al-Mg-Sn-Si-In铝合金在不同溶液中的腐蚀与电化学性能研究 [J]. 腐蚀科学与防护技术, 2015, 27: 425
14 Wang J, Cao C N, Lin H C. Features of AC impedance of pitting corroded electrodes during pits propagation [J]. J. Chin. Soc. Corros. Prot., 1989, 9: 271
王佳, 曹楚南, 林海潮. 孔蚀发展期的电极阻抗频谱特征 [J]. 中国腐蚀与防护学报, 1989, 9: 271
[1] ZHAO Guoxian, WANG Yingchao, ZHANG Siqi, SONG Yang. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[2] FENG Li, ZHANG Shengtao, ZHENG Siyuan, HU Zhiyong, ZHU Hailin, MA Xuemei. Effect of Halogen Anions on Corrosion Inhibition of Ionic Liquids[J]. 中国腐蚀与防护学报, 2022, 42(5): 791-797.
[3] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[4] DENG Jiali, YAN Maocheng, GAO Bowen, ZHANG Hui. Corrosion Behavior of Pipeline Steel Under High-speed Railway Dynamic AC Interference[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[5] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[6] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[7] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[8] RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of Temperature on Corrosion Behavior of 14Cr12Ni3-WMoV Stainless Steel in 0.02 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[9] ZHUANG Dawei, DU Yanxia, CHEN Taotao, LU Danping. Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[10] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[11] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[12] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[13] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[14] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[15] ZHAI Sixin, YANG Xingyun, YANG Jilan, GU Jianfeng. Corrosion Properties of Quenching-Partitioning-Tempering Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
No Suggested Reading articles found!