Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 99-105    DOI: 10.11902/1005.4537.2020.281
Current Issue | Archive | Adv Search |
Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2)
CHENG Qidong, WANG Yanhua()
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(4168KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of surface roughness and scratch depth on corrosion behavior of 304 stainless steel beneath droplets of solution (0.5 mol/L NaCl+0.25 mol/L MgCl2) were studied by means of electrochemical method and the surface analysis techniques. It was found that the increase of roughness and scratch depth can significantly enhance the probability and shorten the induction time of pitting corrosion. The corrosion pits are shallow disk-shaped and the size of pits increases with the roughness and scratch depth. According to the distribution checking, the corrosion pits tend to distribute randomly on the surface of low roughness or no scratches, while they tend to appear at the scratches near the edge of the droplet on the surface of high roughness with deep scratches. According to the element distribution in the pitting region, it was found that the pitting corrosion was related to the evaporation of liquid droplets and the increase of Cl- concentration, which led to the destruction of important components of the passivation film such as oxides of Fe and Ni.

Key words:  stainless steel      pitting corrosion      droplet      roughness      scratch     
Received:  30 December 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51131005)
Corresponding Authors:  WANG Yanhua     E-mail:  wyhazz@163.com
About author:  WANG Yanhua, E-mail: wyhazz@163.com

Cite this article: 

CHENG Qidong, WANG Yanhua. Effect of Surface Scratches on Corrosion Behavior of 304 Stainless Steel Beneath Droplets of Solution (0.5 mol/L NaCl+0.25 mol/L MgCl2). Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 99-105.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.281     OR     https://www.jcscp.org/EN/Y2022/V42/I1/99

Fig.1  Pitting probability of stainless steel surface with different roughness (a), contact angle and average coverage area corresponding to stainless steel surface with different roughness (b) and pitting probability of stainless steel surface with scratches of different depth (c)
Fig.2  Open circuit potential of 304 stainless steel with roughness Ra=3.356 μm (a), pitting induction time of stainless steel with different roughness (b) and with scratches of different depth (c)
Fig.3  Mott-Schottky curves of 304 stainless steel with different roughness
Ra / μmMaximum depth / μmEquivalent diameter / μm
2.6711.91129.48
3.169.23197.75
3.3611.23200.91
5.1110.44223.58
7.4910.71229.87
Table 1  Maximum depth and the equivalent diameter of corrosion pits on stainless steel surface with different roughness
Scratch depth / μmMaximum depth / μmEquivalent diameter / μm
0.004.5856.40
5.0610.7167.34
6.4022.6679.39
11.4829.8879.50
20.3932.26106.24
Table 2  Maximum depth and the equivalent diameter of corrosion pits on stainless steel surface with scratches of different depth
Condition location / μmEdgeCenter
2.672319
3.16384
3.36369
5.113711
7.493614
Table 3  Distribution of corrosion pits on the surface of 304 stainless steel with different roughness
Condition location / μmScratch locationOther location
0.002018
5.06377
6.40463
11.48464
20.39464
Table 4  Distribution of corrosion pits on the surface of 304 stainless steel with scratches of different depth
Fig.4  Z values obtained from binomial distribution test of pitting position on stainless steel surface with different roughness (a) and from binomial distribution test of pitting position on stainless steel surface with scratches of different depths (b)
Fig.5  SEM image of pitting region (a) and EDS test results of pitting region (b)
Fig.6  Mechanism of pitting initiation process of 304 stainless steel with different scratch depths: (a) low roughness without scratches, (b) high roughness with deep scratches
1 Li Q X, Wang Z Y, Han W, et al. Review on atmospheric corrosion of stainless steels [J]. Corros. Sci. Prot. Technol., 2009, 21: 549
李巧霞, 王振尧, 韩薇等. 不锈钢的大气腐蚀 [J]. 腐蚀科学与防护技术, 2009, 21: 549
2 Ke R R, Alkire R. ChemInform abstract: Initiation of corrosion pits at inclusions on 304 stainless steel [J]. ChemInform, 1996, 27(16): 1
3 Williams D E, Zhu Y Y. Explanation for initiation of fitting corrosion of stainless steels at sulfide inclusions [J]. J. Electrochem. Soc., 2000, 147: 1763
4 Mikhailov A A, Strekalov P V, Panchenko Y M. Atmospheric corrosion of metals in regions of cold and extremely cold climate (a review) [J]. Prot. Met., 2008, 44: 644
5 Mi N, Ghahari M, Rayment T, et al. Use of inkjet printing to deposit magnesium chloride salt patterns for investigation of atmospheric corrosion of 304 stainless steel [J]. Corros. Sci., 2011, 53: 3114
6 Maier B, Frankel G S. Pitting corrosion of bare stainless steel 304 under chloride solution droplets [J]. J. Electrochem. Soc., 2010, 157: C302
7 Tada E, Frankel G S. Effects of particulate silica coatings on localized corrosion behavior of AISI 304SS under atmospheric corrosion conditions [J]. J. Electrochem. Soc., 2007, 154: C318
8 Tsutsumi Y, Nishikata A, Tsuru T. Initial stage of pitting corrosion of type 304 stainless steel under thin electrolyte layers containing chloride ions [J]. J. Electrochem. Soc., 2005, 152: B358
9 Guo L Y, Street S R, Mohammed-Ali H B, et al. The effect of relative humidity change on atmospheric pitting corrosion of stainless steel 304L [J]. Corros. Sci., 2019, 150: 110
10 Street S R, Cook A J M C, Mohammed-Ali H B, et al. The effect of deposition conditions on atmospheric pitting corrosion location under evans droplets on type 304L stainless steel [J]. Corrosion, 2018, 74: 520
11 Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of type 304 stainless steel under a droplet of chloride solutions [J]. Corros. Sci., 2007, 49: 1394
12 Degerbeck J, Karlsson A, Berglund G. Atmospheric corrosion of stainless steel of type 18Cr-2Mo-Ti [J]. Br. Corros. J., 1979, 14: 220
13 Guo L Y, Mi N, Mohammed-Ali H, et al. Effect of mixed salts on atmospheric corrosion of 304 stainless steel [J]. J. Electrochem. Soc., 2019, 166: C3010
14 Cheng X Q, Li X G, Du C W. Properties of passive film formed on 316L/2205 stainless steel by Mott-Schottky theory and constant current polarization method [J]. Chin. Sci. Bull., 2009, 54: 2239
15 Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
16 Taveira L V, Montemor M F, Da Cunha Belo M, et al. Influence of incorporated Mo and Nb on the Mott-Schottky behaviour of anodic films formed on AISI 304L [J]. Corros. Sci., 2010, 52: 2813
17 Fattah-Alhosseini A, Vafaeian S. Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott-Schottky analysis and EIS measurements [J]. J. Alloy. Compd., 2015, 639: 301
18 de Oliveira R K, Correa O V, de Oliveira M C L, et al. Surface chemistry and semiconducting properties of passive film and corrosion resistance of annealed surgical stainless steel [J]. J. Mater. Eng. Perform., 2020, 29: 6085
19 Ge H H, Zhou G D, Wu W Q. Passivation model of 316 stainless steel in simulated cooling water and the effect of sulfide on the passive film [J]. Appl. Surf. Sci., 2003, 211: 321
20 Ning L J, Liu X P. De Mauvo-Laplace's theorem and its application [J]. J. Further Edu. Shaanxi Normal Univ., 2015, 20(3): 101
宁丽娟, 刘新平. 德莫佛——拉普拉斯定理及应用 [J]. 陕西师范大学继续教育学报, 2015, 20(3): 101
21 Fu H M, Liang C H. Confidence test methods for binomial distribution [J]. J. Mech. Strength, 2003, 25: 513
傅惠民, 梁朝虎. 二项分布置信检验方法 [J]. 机械强度, 2003, 25: 513
22 Fan Z L. Error investigation in the approximate calculation with de Moivre-Laplace theorem [J]. J. Taiyuan Inst. Mech., 1990, 11(1): 72
樊志良. 用棣莫弗—拉普拉斯定理作近似计算时的误差探讨 [J]. 太原机械学院学报, 1990, 11(1): 72
23 Olefjord I, Elfstrom B O. The composition of the surface during passivation of stainless steels [J]. Corrosion, 1982, 38: 46
24 Jung R H, Tsuchiya H, Fujimoto S. XPS characterization of passive films formed on Type 304 stainless steel in humid atmosphere [J]. Corros. Sci., 2012, 58: 62
25 Liang C H. Influence of nickel on crevice corrosion behavior of type 304 stainless steel in NaCl solution [J]. Corros. Sci. Prot. Technol., 1999, 20: 147
梁成浩. 镍对304不锈钢在NaCl溶液中缝隙腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 1999, 20: 147
26 Vignal V, Krawiec H, Le Manchet S. Influence of surface preparation and microstructure on the passivity and corrosion behaviour of duplex stainless steels [J]. J. Solid State Electrochem., 2014, 18: 2947
27 Nishikata A, Ichihara Y, Hayashi Y, et al. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron [J]. J. Electrochem. Soc., 1997, 144: 1244
[1] ZHANG Wenli, ZHANG Zhenlong, WU Zhaoliang, HAN Sike, CUI Zhongyu. Effect of Temperature on Pitting Corrosion Behavior of 316L Stainless Steel in Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[2] YIN Yangyang, LIU Jianfeng, MIAO Keji, WANG Ting, NING Kai, PAN Weiguo, YUAN Binxia, YIN Shibin. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[3] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[4] SUN Baozhuang, ZHOU Xiaocheng, LI Xiaorong, SUN Weilu, LIU Zirui, WANG Yuhua, HU Yang, LIU Zhiyong. Stress Corrosion Cracking Behavior of 316L Stainless Steel with Varying Microstructure in Ammonium Chloride Environment[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[5] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[6] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[7] LEI Zheyuan, WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Distribution on Pitting Initiation and Propagation of 2002 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[8] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[9] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[10] WANG Yicong, HU Qian, HUANG Feng, LIU Jing. Effect of Microstructure Partition on Micro-polarization Behavior and Pitting Resistance of Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 667-672.
[11] ZHANG Longhua, LI Changjun, PAN Lei, HAN Sike, WANG Xin, CUI Zhongyu. Corrosion Behavior of 316L Stainless Steel in Simulated Oilfield Wastewater[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[12] JI Kaiqiang, LI Guangfu, ZHAO Liang. Pitting Behavior of Two Stainless Steels in Simulated Heavy Water Reactor Primary Solution and 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 653-658.
[13] ZHANG Xin, LIN Muyan, YANG Guangheng, WANG Zehua, SHAO Jia, ZHOU Zehua. Effect of Er on Corrosion Behavior of Marine Engineering 5052 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[14] JIAO Yang, ZHANG Shenghan, TAN Yu. Research Progress on Stress Corrosion Cracking of Stainless Steel for Nuclear Power Plant in High-temperature and High-pressure Water[J]. 中国腐蚀与防护学报, 2021, 41(4): 417-428.
[15] YANG Zhongkui, SHI Yanhua, QIAO Zhongli, LIANG Ping, WANG Ling. Effect of ClO2- on Pitting Initiation of S2205 Stainless Steel in Cl- Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(4): 523-528.
No Suggested Reading articles found!