Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (1): 93-98    DOI: 10.11902/1005.4537.2020.256
Current Issue | Archive | Adv Search |
Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance
YIN Xubao, LI Yuqiao, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Download:  HTML  PDF(5235KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A super-hydrophobic surface is constructed on the Cu substrate by chemical etching, high-temperature oxidation and then modifying with 1-Dodecanethiol as hydrophobic agent, in order to improve the corrosion resistance of the Cu substrate. The results show that when chemical etching for 8 min, high temperature oxidation for 6 h, and 1-Dodecanethiol modification for 15 min, a net-like layered structure with sufficient roughness can form on the Cu surface, which can capture a large amount of air. At this time, the surface of the Cu substrate has the best hydrophobicity with a contact angle of 165.50° for water. The measured potentiodynamic polarization curve shows that in comparison with the bare Cu, the corrosion rate of the superhydrophobic surface is significantly reduced, and the corrosion current density drops from 7.43×10-5 A·cm-2 to 4.31×10-6 A·cm-2. The results of electrochemical impedance spectroscopy showed that the charge transfer resistance of the superhydrophobic surface was significantly higher than that of the bare Cu substrate, indicating that its corrosion resistance was obviously improved due to the presence of the superhydrophobic surface film. Compared with the current methods for preparing superhydrophobic surfaces, this method is cheaper, simpler and environmentally friendly.

Key words:  chemical etching      high-temperature oxidation      1-Dodecanethiol      superhydrophobic surface      anti-corrosion     
Received:  08 December 2020     
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China-Shandong Province Joint Fund(U1706221)
Corresponding Authors:  GAO Rongjie     E-mail:  dmh206@ouc.edu.cn
About author:  GAO Rongjie, E-mail: dmh206@ouc.edu.cn

Cite this article: 

YIN Xubao, LI Yuqiao, GAO Rongjie. Preparation of Superhydrophobic Surface on Copper Substrate and Its Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 93-98.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.256     OR     https://www.jcscp.org/EN/Y2022/V42/I1/93

Fig.1  SEM surface images of Cu samples after chemical etching for 8 min (a), then oxidation at 160 ℃ for 6 h (b), finally 1-Dodecanethiol modification for 10 min (c), 15 min (d), 24 min (e) and 40 min (f)
Fig.2  XRD patterns of blank and superhydrophobic surfaces of copper
Fig.3  EDS spectrum of sample surface modified by 1-Dodecanethiol
Fig.4  Infrared spectra of superhydrophobic surface and 1-Dodecanethiol
Fig.5  Change of contact angle of water drop on the surface of the sample modified by 1-Dodecanethiol for different time
Fig.6  Photos showing contact angle (a) and rolling (b) of water drop on the superhydrophobic surface
Fig.7  Potential polarization curves of blank, 1-Dodecanethiol unmodified and modified copper samples
SampleEcorr / VIcorr / A·cm-2
Copper-0.2967.43×10-5
Before modification-0.2211.51×10-5
Superhydrophobic surface-0.1874.31×10-6
Table 1  Fitting parameters of potential polarization curves
Fig.8  Nyquist plot of blank, 1-Dodecanethiol unmodified and modified copper samples
SampleRsΩ·cm2CdlF·cm-2RctΩ·cm2CcF·cm-2RcΩ·cm2
Copper23.731.18×10-4748.3------
Before modification6.4982.16×10-5991.87.58×10-560.49
Superhydrophobic15.482.33×10-62431.41.59×10-689.76
Table 2  Electrochemical model parameters obtained by fitting Nyquist plot in Fig.8
Fig.9  Equivalent circuit models of EIS of Cu samples with blank surface (a) and superhydrophobic surface (b)
Fig.10  Nyquist plots of superhydrohobic specimen after immersion in 3.5%NaCl solution for different time

Immersion

time / d

RsΩ·cm2CdlF·cm-2RctΩ·cm2CcF·cm-2RcΩ·cm2
117.482.21×10-62380.77.98×10-6108.52
39.6348.47×10-62245.04.83×10-5129.48
56.4794.64×10-52187.89.65×10-5178.84
710.647.38×10-51977.49.87×10-5279.50
Table 3  Electrochemical model parameters obtained by fitting Nyquist plot in Fig.10
1 Jiang L. Nanostructured materials with superhydrophobic surface-from nature to biomimesis [J]. Chem. Ind. Eng. Prog., 2003, 22: 1258
江雷. 从自然到仿生的超疏水纳米界面材料 [J]. 化工进展, 2003, 22: 1258
2 Erbil H Y, Demirel A L, Avcı Y, et al. Transformation of a simple plastic into a superhydrophobic surface [J]. Science, 2003, 299: 1377
3 Wang H X, Xue Y H, Ding J, etal, Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane [J]. Angew. Chem. Int. Ed., 2011, 50: 11433
4 Cho K L, Liaw I I, Wu A H F, et al. Influence of roughness on a transparent superhydrophobic coating [J]. J. Phys. Chem. C, 2010, 114: 11228
5 Xiong D A, Liu G J, Duncan E J S. Diblock-copolymer-coated water-and oil-repellent cotton fabrics [J]. Langmuir, 2012, 28: 6911
6 Latthe S S, Sutar R S, Kodag V S, et al. Self-cleaning superhydrophobic coatings: Potential industrial applications [J]. Prog. Org. Coat., 2019, 128: 52
7 Li H, Yu S R, Hu J H, et al. Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning, anti-corrosion and anti-scaling properties [J]. Appl. Surf. Sci., 2019, 481: 872
8 Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936, 28: 988
9 Xin Z, Zhang W F. Research progress of fabrication and application of superamphiphobic surface [J]. Chem. Ind. Eng. Prog., 2015, 34: 447
辛忠, 张雯斐. 超双疏表面的构筑及研究进展 [J]. 化工进展, 2015, 34: 447
10 Liu Y, Cao H J, Chen S G, et al. Ag nanoparticle-loaded hierarchical superamphiphobic surface on an Al substrate with enhanced anticorrosion and antibacterial properties [J]. J. Phys. Chem. C, 2015, 119: 25449
11 Yin K, Du H F, Luo Z, et al. Multifunctional Micro/Nano-patterned PTFE near-superamphiphobic surfaces achieved by a femtosecond laser [J]. Surf. Coat. Technol., 2018, 345: 53
12 Li P P, Chen X H, Yang G B, et al. Preparation of silver-cuprous oxide/stearic acid composite coating with superhydrophobicity on copper substrate and evaluation of its friction-reducing and anticorrosion abilities [J]. Appl. Surf. Sci., 2014, 289: 21
13 Peng N, Xu Q J, Liu W, et al. Study on the construction of the superhydrophobic surface on copper-nickel alloy and corrosion resistance [J]. J. Shanghai Univ. Electric Power, 2016, 32: 371
彭娜, 徐群杰, 刘伟等. 白铜超疏水表面的构建及耐蚀性能的研究 [J]. 上海电力学院学报, 2016, 32: 371
14 Li Z B, Hui S M, Yang J, et al. A facile strategy for the fabrication of superamphiphobic MoS2 film on steel substrates with excellent anti-corrosion property [J]. Mater. Lett., 2018, 229: 336
15 Zeng Y W, Qin Z L, Hua Q H, et al. Sheet-like superhydrophobic surfaces fabricated on copper as a barrier to corrosion in a simulated marine system [J]. Surf. Coat. Technol., 2019, 362: 62
16 Lv Z X, Yu S R, Song K X, et al. A two-step method fabricating a hierarchical leaf-like superamphiphobic PTFE/CuO coating on 6061Al [J]. Prog. Org. Coat., 2020, 147: 105723
17 Liu W, Xu Q J, Han J, et al. A novel combination approach for the preparation of superhydrophobic surface on copper and the consequent corrosion resistance [J]. Corros. Sci., 2016, 110: 105
18 Wan Y X, Chen M J, Liu W, et al. The research on preparation of superhydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance [J]. Electrochim. Acta, 2018, 270: 310
19 Lu J, Wu J Y. Review on research and application of Cu-Ni alloys [J]. Nonferrous Met. Mater. Eng., 2020, 41(3): 55
陆菁, 武家艳. 铜镍合金的研究及其应用综述 [J]. 有色金属材料与工程, 2020, 41(3): 55
20 Zhao J Y. Application of copper alloy with corrosion resistant and Anti-pollution for Ocean Circumstance [J]. Spec. Cast. Nonferrous Alloy., 2006, 26: 390
赵九夷. 我国海洋耐蚀防污铜合金研究及其应用 [J]. 特种铸造及有色合金, 2006, 26: 390
21 Yang Y Y, Ding Z W, Liu L Y. Fabrication of super-hydrophobic and super-oleophlic membranes and their separation of oil-water mixture [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci.), 2013, 40(): 23
杨洋洋, 丁忠伟, 刘丽英. 超疏水/超亲油膜的制备及其油水分离性能 [J]. 北京化工大学学报 (自然科学版), 2013, 40(): 23
22 Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Faraday Soc., 1944, 40: 546
23 Jiang X, Tian M M, Lei Y, et al. Fabrication and corrosion resistance of copper-based superhydrophobic surface [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2020, 48(4): 87
蒋翔, 田蒙蒙, 雷瑜等. 铜基超疏水表面的制备及防腐蚀特性 [J]. 华南理工大学学报 (自然科学版), 2020, 48(4): 87
24 Zhang F M, Zeng Z X, Wang G, et al. Fabrication and Anti-corrosion performance of superhydrophobic surface film on Q235 steel substrate [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 617
张方铭, 曾志翔, 王刚等. Q235钢超疏水表面制备及耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2016, 36: 617
25 Ren J D, Gao R J, Zhang Y, et al. Fabrication of amphiphobic surface of pipeline steel by acid etching and its anti-corrosion properties [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 233
任继栋, 高荣杰, 张宇等. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 233
[1] LIU Shuhui, LIU Bin, XU Dawei, LIU Yu, CHEN Fanwei, LIU Siqi. Research Progress on Anti-corrosion Coatings of Layered Double Hydroxides[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[2] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[3] ZHOU Hao, WANG Shengli, LIU Xuefeng, YOU Shijie. Hybrid Corrosion Inhibitor for Anti-corrosion and Protection of Bronze Relics[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[4] LI Ruitao, XIAO Bo, LIU Xiao, ZHU Zhongliang, CHENG Yi, LI Junwan, CAO Jieyu, DING Haimin, ZHANG Naiqiang. Corrosion Behavior of Low Alloy Heat-resistant Steel T23 in High-temperature Supercritical Carbon Dioxide[J]. 中国腐蚀与防护学报, 2021, 41(3): 327-334.
[5] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[6] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[7] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[8] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[9] Jidong REN,Rongjie GAO,Yu ZHANG,Yong LIU,Tian DING. Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
[10] Xinhua ZHANG,Zhongkang ZHOU,Qunjie XU,Xiaochun CHEN,Aijun YAN,Qiangqiang LIAO,Honghua GE. Anti-corrosion Performance of Nickel-rich Conductive Coatings in Simulated Seawater[J]. 中国腐蚀与防护学报, 2017, 37(2): 189-194.
[11] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[12] Fangming ZHANG,Zhixiang ZENG,Gang WANG,Junjun CHEN,Yong XU,Liping WANG. Fabrication and Anti-corrosion Performance of Super-hydrophobic Surface Film on Q235 Steel Substrate[J]. 中国腐蚀与防护学报, 2016, 36(6): 617-623.
[13] Yanan FANG,Liguang QIN,Wenjie ZHAO,Qin BAI,Xin ZHANG,Xuedong WU. Research Progress and Development Trend on Corrosion Resistant Fluorocarbon Paint[J]. 中国腐蚀与防护学报, 2016, 36(2): 97-106.
[14] GUO Yong'an, LI Bosong, LAI Wanhui, GUO Jianting, ZHOU Lanzhang. OXIDATION BEHAVIOR OF Ni-BASED SUPERALLOY K444 AT 900℃ IN AIR DURING LONG TERM[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[15] LIANG Shuquan, ZHANG Yong, GUAN Dikai, TAN Xiaoping, TANG Yan, MAO Zhiwei. EFFECT OF ROLLING TEMPERATURE ON MICROSTRUCTURE AND PERFORMANCES OF Al-Mg-Sn-Bi-Ga-In ALLOY ANODE[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
No Suggested Reading articles found!