Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2020, Vol. 40 Issue (4): 302-308    DOI: 10.11902/1005.4537.2019.126
Current Issue | Archive | Adv Search |
Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well
LI Qing1,2, ZHANG Deping1,2, LI Xiaorong3, WANG Wei4, SUN Baozhuang5(), AI Chi1()
1. Northeast Petroleum University Oil and Gas Well Engineering College, Daqing 163318, China
2. Carbon Dioxide Development Company, Jilin Oil Field Company, Songyuan 138000, China
3. Tianjin Dagang Oilfield Group Engineering Construction Co. Ltd. , Tianjin 300280, China
4. Oil and Gas Engineering Research Institute, PetroChina Jilin Oilfield Company, Songyuan 138000, China
5. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(6083KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The stress corrosion cracking behavior of two oil casing steels TP110TS and P110 in a simulated solution in the annulus space of CO2 injection wells was comparatively studied by U-bend specimen immersion test and electrochemical test. The results show that TP110TS steel and P110 steel have certain degree of stress corrosion sensitivity in the solution (large amount of CO2 and micro H2S), and the stress corrosion mechanism is the synergistic mechanism of anodic dissolution (AD) and hydrogen embrittlement (HE). In the CO2-H2S environment, the concentration of imidazoline corrosion inhibitor has different effect on the stress corrosion of oil casing steels TP110TS and P110. Adding sufficient corrosion inhibitor has a good inhibitory effect on the stress corrosion behavior of P110 steel. However, when the added amount is insufficient, the corrosion inhibitor increases the stress corrosion tendency of P110 steel. The stress corrosion sensitivity of TP110TS steel decreases with the increase of corrosion inhibitor concentration. It follows that TP110TS is more suitable for the CO2-H2S environment where corrosion inhibitors are added.

Key words:  TP110TS steel      P110 steel      annulus environment      stress corrosion      CO2 injection well     
Received:  23 August 2019     
ZTFLH:  TG174.42  
Fund: National Key Oil Program of China(2016ZX05016002)
Corresponding Authors:  SUN Baozhuang,AI Chi     E-mail:  sunbaoz9406@163.com;aichi2001@163.com

Cite this article: 

LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well. Journal of Chinese Society for Corrosion and protection, 2020, 40(4): 302-308.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.126     OR     https://www.jcscp.org/EN/Y2020/V40/I4/302

SteelCSiMnSPCrFe
TP110TS0.330.210.640.00340.00933.03Bal.
P1100.250.232.640.0030.00950.033Bal.
Table 1  Chemical compositions of TP110TS and P110 tubing steels (mass fraction / %)
Fig.1  Metallographic structures of P110 (a) and TP110TS (b) tubing steels
Fig.2  Macroscopic morphologies of TP110TS (a, c) and P110 (b, d) steels after immersion for 720 h in simulated solutions without (a, b) and with 1 g/L (c, d) corrosion inhibitor
AlloyCorrosion inhibitor concentration / g·L-1Degree of fractureDegree of corrosion
P1100FractureCorrosion crack
0.4UnbrokenSevere pitting corrosion
1UnbrokenSlightly corroded, less pitting
TP110TS0FractureCorrosion crack
0.4UnbrokenSevere pitting corrosion
1UnbrokenSlightly corroded, less pitting
Table 2  Comparison of corrosion and cracking of TP110TS and P110 steels after U-bend corrosion in simulated solutions with different concentrations of inhibitor
Fig.3  Micromorphologies of P110 (a~c) and TP110TS (d~f) steels after immersion for 720 h in simulated solutions with 0 g/L (a, d), 0.4 g/L (b, e) and 1 g/L (c, f) inhibitor and then removal of corrosion products
Fig.4  Polarization curves of TP110TS and P110 steels in simulated solutions with different concentrations of inhibitor
ConditionEcorr (vs SCE) / mVIcorr / μA·cm-2
TP110TS-0.4 g/L-113.852.595
TP110TS-1 g/L-18.841.520
P110-0.4 g/L-13.1641.610
P110-1 g/L-153.340.450
Table 3  Fitting results of polarization curves for TP110TS and P110 steels in simulated solutions with different concentrations of inhibitor
Fig.5  Electrochemical impedance spectroscopies of TP110TS and P110 steels in simulated solutions with different concentrations of inhibitor
Fig.6  Equivalent circuit for fitting EIS of TP110TS and P110 steels in simulated solutions with different concentrations of inhibitor
ConditionRs / Ω·cm2Qf / Ω-1·cm-2·SnRf / Ω·cm2Qdl / Ω-1·cm-2·SnRct / Ω·cm2
TP110TS-0.4 g/L33.172.306×10-9395.13.581×10-61.122×104
TP110TS-1 g/L17011.720×10-4870.82.832×10-41.05×106
P110-0.4 g/L713.41.057×10-103.642.569×10-10.631×104
P110-1 g/L1.353×10-46.495×10-874.51.499×10-47.056×1015
Table 4  Fitting results of EIS of TP110TS and P110 steels
[1] Li S L, Tang Y, Hou C X. Present situation and development trend of CO2 injection enhanced oil recovery technology [J]. Rsvr. Eval. Dvlopmt., 2019, 9(3): 1
(李士伦, 汤勇, 侯承希. 注CO2提高采收率技术现状及发展趋势 [J]. 油气藏评价与开发, 2019, 9(3): 1)
[2] Zhang N, Wei M Z, Bai B J. Statistical and analytical review of worldwide CO2 immiscible field applications [J]. Fuel, 2018, 220: 89
[3] Liu Z Y, Li H, Jia Z J, et al. Failure analysis of P110 steel tubing in low-temperature annular environment of CO2 flooding wells [J]. Eng. Failure Anal., 2016, 60: 296
[4] Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
doi: 10.1038/527441a pmid: 26607528
[5] Zhang G A, Cheng Y F. On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production [J]. Corros. Sci., 2009, 51: 87
[6] Liu Z Y, Wang X Z, Liu R K, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2 annular environment [J]. J. Mater. Eng. Perform., 2014, 23: 1279
[7] Sun F L, Ren S, Li Z, et al. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments [J]. Mater. Sci. Eng., 2017, A685: 145
[8] Liu Z Y, Zhao T L, Liu R K, et al. Influence factors on stress corrosion cracking of P110 tubing steel under CO2 injection well annulus environment [J]. J. Cent. South Univ., 2016, 23: 757
[9] Liu Q, Li Z, Liu Z Y, et al. Effects of H2S/HS- on stress corrosion cracking behavior of X100 pipeline steel under simulated sulfate-reducing bacteria metabolite conditions [J]. J. Mater. Eng. Perform., 2017, 26: 2763
[10] Liu R K, Zhang D P, Hao W K, et al. Effect of H2S partial pressure on stress corrosion cracking behavior of N80 oil casing steel in the environment of CO2 [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2013, 45(6): 196
(刘然克, 张德平, 郝文魁等. H2S分压对N80油套管钢CO2环境下应力腐蚀开裂的影响 [J]. 四川大学学报 (工程科学版), 2013, 45(6): 196)
[11] Smanio V, Kittel J, Fregonese M, et al. Acoustic emission monitoring of wet H2S cracking of linepipe steels: Application to hydrogen-induced cracking and stress-oriented hydrogen-induced cracking [J]. Corros. Sci., 2011, 67: 065002-1
[12] Liu Z Y, Dong C F, Li X G. Stress corrosion cracking of 3Cr17Ni7Mo2SiN stainless steel in sulfide hydrogen solutions [J]. J. Mech. Eng., 2011, 47(6): 62
(刘智勇, 董超芳, 李晓刚. 3Cr17Ni7Mo2SiN不锈钢硫化氢环境下的应力腐蚀开裂 [J]. 机械工程学报, 2011, 47(6): 62)
[13] Zhao J M, Duan H B, Jiang R J. Synergistic corrosion inhibition effect of quinoline quaternary ammonium salt and Gemini surfactant in H2S and CO2 saturated brine solution [J]. Corros. Sci., 2015, 91: 108
[14] Kang Y, Luo H. Research advance in inhibition of imidazoline corrosion inhibitor from CO2/H2S corrosion [J]. Adv. Fine Petrochem., 2011, 12(9): 55
(康永, 罗红. 咪唑啉类缓蚀剂对CO2/H2S腐蚀抑制作用研究进展 [J]. 精细石油化工进展, 2011, 12(9): 55)
[15] Zhao J M, Zhao Q F, Jiang R J. Relationship between structure of imidazoline derivates with corrosion inhibition performance in CO2/H2S environment [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 142
(赵景茂, 赵起锋, 姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究 [J]. 中国腐蚀与防护学报, 2017, 37: 142)
[16] López D A, Simison S N, de Sánchez S R. Inhibitors performance in CO2 corrosion: EIS studies on the interaction between their molecular structure and steel microstructure [J]. Corros. Sci., 2005, 47: 735
[17] Li J K, Zhao X L, Luan Y, et al. GB/T 13298-2015 Inspection methods of microstructure for metals [S]. Beijing: China Standard Press, 2016
李继康, 赵晓丽, 栾燕等. GB/T 13298-2015 金属显微组织检验方法 [S]. 北京: 中国标准出版社, 2016)
[18] Zhao Y, Xie J F, Zeng G X, et al. Pourbaix diagram for HP-13Cr stainless steel in the aggressive oilfield environment characterized by high temperature, high CO2 partial pressure and high salinity [J]. Electrochim. Acta, 2019, 293: 116
[19] Fragiel A, Serna S, Pérez R. Electrochemical study of two microalloyed pipeline steels in H2S environments [J]. Int. J. Hydrogen Energy, 2005, 30: 1303
[20] Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking of 2205 duplex stainless steel in H2S-CO2environment [J]. J. Mater. Sci., 2009, 44: 4228
[21] Liu R K, Wang L X, Liu Z Y, et al. Effect of imidazoline corrosion inhibitor on stress corrosion cracking behavior of P110 steel in simulated annulus environment in CO2 injection wells [J]. Surf. Technol., 2015, (3): 25
(刘然克, 王立贤, 刘智勇等. 咪唑啉类缓蚀剂对P110钢在CO2注入井环空环境中应力腐蚀行为的影响 [J]. 表面技术, 2015, (3): 25)
[22] Kittel J, Ropital F, Grosjean F, et al. Corrosion mechanisms in aqueous solutions containing dissolved H2S. Part 1: Characterisation of H2S reduction on a 316L rotating disc electrode [J]. Corros. Sci., 2013, 66: 324
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[8] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[9] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[10] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[11] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[12] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[13] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[14] Ruolin ZHU,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Review on SCC Crack Growth Behavior of Dissimilar Metal Welds for Nuclear Power Reactors[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[15] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
No Suggested Reading articles found!