Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (1): 31-38    DOI: 10.11902/1005.4537.2015.049
Orginal Article Current Issue | Archive | Adv Search |
Effect of pH Value on Corrosion Behavior of Q235 Steel in an Artificial Soil
Tao HUANG1,Xiaoping CHEN1(),Xiangdong WANG1,Fengyi MI1,Rui LIU2,Xiangyang LI1
1. Division of Engineering Steel,Central Iron and Steel Research Institute, Beijing 100081, China
2. School of Material Science and Engineering, Kunming University of Science and Technology,Kunming 650093, China
Download:  HTML  PDF(3413KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Coupons of the grounding material Q235 steel were buried in an artificial soil of diatomite with different pH values for 20 d, and then the corrosion behavior of the steel was examined. The results indicated that the pH value of the artificial soil had a great effect on the corrosion behavior of Q235 steel. With the increasing of pH value, the corrosion rate of the steel in the artificial soil decreased, which accorded fairly well with that in the actual soil, correspondingly the corrosion type of the coupons turned from rather serious uniform corrosion to slight local corrosion. The corrosion products formed in acidic artificial soil are consistent with those in an alkaline artificial soil, they all composed mainly of α-FeOOH, Fe3O4, γ-FeOOH and Fe2O3, however the products in the late case contained higher Fe3O4 and less α-FeOOH.

Key words:  soil corrosion      artificial soil      Q235 steel      pH value     

Cite this article: 

Tao HUANG,Xiaoping CHEN,Xiangdong WANG,Fengyi MI,Rui LIU,Xiangyang LI. Effect of pH Value on Corrosion Behavior of Q235 Steel in an Artificial Soil. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 31-38.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.049     OR     https://www.jcscp.org/EN/Y2016/V36/I1/31

Fig.1  Corrosion morphologies of Q235 steel in artificial soils with pH=4.5 (a, d), pH=5.5 (b, e), and pH=8.5 (c, f) for 5 d (a~c) and 20 d (d~f)
Fig.2  SEM images of corrosion products of Q235 steel corroded in artificial soils with pH=4.5 (a, b), pH=5.5 (c, d) and pH=8.5 (e, f) for 20 d
Fig.3  EDS spectra of corrosion products of Q235 steel corroded in artificial soils with pH=4.5 (a), pH=5.5 (b) and pH=8.5 (c) for 20 d
Time / d pH Rust coverage / % Mass loss / g Max-pitting depth / mm
5 4.5 67 0.1756 0.01~0.05
5.5 17 0.0942 Minor
8.5 16 0.0631 Minor
20 4.5 86 0.9677 0.30~0.35
5.5 49 0.5836 0.25~0.30
8.5 25 0.2826 0.05~0.10
Table 1  Rust layer coverage, mass loss and maximum pitting depth of Q235 steel after corrosion in artificial soils with different pH values
Fig.4  XRD patterns of corrosion products of Q235 steel immersed in artificial soils with pH=4.5 (a), pH=5.5 (b) and pH=8.5 (c) for 20 d
Fig.5  Contents of various corrosion products of Q235 steelimmersed in artificial soils with different pH values for 20 d
[1] Li C L, Qu Z Y, Wang X Y, et al.Characteristic assessment of key factors of soil corrosivity[J]. J. Univ. Sci. Technol. Beijing, 1996, 18(2): 174
[1] (李长荣, 屈祖玉, 汪轩义等. 土壤腐蚀性关键因素的评价与选取[J]. 北京科技大学学报, 1996, 18(2): 174)
[2] Jin M H, Huang H T.Relationship between corrosion rate of metal and resistivity in soil[J]. J. Huazhong Univ. Sci. Technol., 2001, 29(5): 103
[2] (金名惠, 黄辉桃. 金属材料在土壤中的腐蚀速度与土壤电阻率[J]. 华中科技大学学报, 2001, 29(5): 103)
[3] Liu Z Y, Zhai G L, Li X G, et al.Effect of deteriorated microstructures on stress corrosion cracking of X70 pipeline steel in acidic soil environment[J]. J. Univ. Sci. Technol. Beijing, 2008, 15(6): 707
[4] Wu Y H, Liu T M, Luo S X, et al.Corrosion characteristics of Q235 steel in simulated Yingtan soil solutions[J]. Materialwiss. Werkstofftech., 2010, 41(3): 142
[5] Singh J K, Singh D D N. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH[J]. Corros. Sci., 2012, 56: 129
[6] National Gateway of Soil Corrosion Test. Soil Corrosion Test Method of Materials [M]. Beijing: Science Press, 1990
[6] (全国土壤腐蚀试验网站编. 材料土壤腐蚀试验方法 [M]. 北京: 科学出版社, 1990)
[7] Liang P, Du C W, Li X G.Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J]. Mater. Design, 2009, 30(5): 1712
[8] Xi Y J, Sun C, Li H X, et al.Acidic soil corrosion[J]. Corros. Sci. Prot. Technol., 2002, 14(4): 247
[8] (席艳君, 孙成, 李洪锡等. 酸性土壤腐蚀[J]. 腐蚀科学与防护技术, 2002, 14(4): 247)
[9] Nie X H, Li X G, Li Y L, et al.Simulative and accelerative experimentation of carbon steel corrosion in soil[J]. Mater. Eng., 2012,(1): 59
[9] (聂向晖, 李晓刚, 李云龙等. 碳钢的土壤腐蚀模拟加速实验[J]. 材料工程, 2012, (1): 59)
[10] Shi Y H, Liang P.Corrosion behavior of Q345 steel in five saturated soil solutions in fushun region[J]. Corros. Sci. Prot. Technol., 2012, 24(6): 473
[10] (史艳华, 梁平. Q345钢在抚顺地区土壤饱和溶液中的腐蚀行为[J]. 腐蚀科学与防护技术, 2012, 24(6): 473)
[11] Nie X H, Li Y L, Li J K, et al.Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil[J]. Mater. Eng., 2010, (8): 24
[11] (聂向晖, 李云龙, 李记科等. Q235碳钢在滨海盐土中的腐蚀形貌,产物及机理分析[J]. 材料工程, 2010, (8): 24)
[12] Liu T M, Wu Y H, Luo S X, et al.Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution[J]. Materialwiss. Werkstofftech., 2010, 41(4): 228
[13] Gao L, Lv W L, Cao J L.Corrosion behavior of underground heat-supply pipeline steel in simulated solution of soil at different locations of Beijing city[J]. Mater. Prot., 2012, 45(6): 54
[13] (高磊, 吕维玲, 曹江利. 埋地热力管线材Q235钢在北京土壤模拟溶液中的腐蚀行为[J]. 材料保护, 2012, 45(6): 54)
[14] Zhu M, Du C W, Li X G, et al.Galvanic corrosion behavior of copper-clad steel bars with unclad two-end faces[J]. Corros. Sci. Prot. Technol., 2013, 25(4): 265
[14] (朱敏, 杜翠薇, 李晓刚等. 铜包钢在截面暴露条件下的电偶腐蚀行为研究[J]. 腐蚀科学与防护技术, 2013, 25(4): 265)
[15] Jiang Y Z, Jia S Y.Exploitation application existing conditions and evolution of diatiomite[J]. Non-ferrous Mining Metall., 2011, 27(5): 31
[15] (姜玉芝, 贾嵩阳. 硅藻土的国内外开发应用现状及进展[J]. 有色矿冶, 2011, 27(5): 31)
[16] Su H, Yan A J, Chen X P, et al.A accelerated corrosion test method of simulation soil corrosion process [P]. China: 201310259811.9, 2013
[16] (苏航, 闫爱军, 陈小平等. 一种模拟土壤腐蚀过程的加速腐蚀测试方法 [P]. 中国: 201310259811.9, 2013)
[17] Huang T, Yan A J, Chen X P, et al.Influence of water content on corrosion behavior of Q235 steel in an artificial soil[J]. Corros. Sci. Prot. Technol., 2014, 26(6): 511
[17] (黄涛, 闫爱军, 陈小平等. 含水率对Q235钢在模拟酸性土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2014, 26(6): 511)
[18] Huang T, Chen X P, Wang X D, et al.Indoor accelerated corrosion test method for steel in simulated acidic soil environment[J]. Mater. Prot., 2014, 47(10): 58
[18] (黄涛, 陈小平, 王向东等. 实验室模拟酸性土壤中钢材的加速腐蚀[J]. 材料保护, 2014, 47(10): 58)
[19] Liu Z Y, Zhai G L, Du C W, et al.SCC of X70 pipeline steel in Yingtan acid soil environment[J]. J. Sichuan Univ.(Eng. Sci. Ed.), 2008, 40(2): 76
[19] (刘智勇, 翟国丽, 杜翠薇等. X70钢在鹰潭酸性土壤中的应力腐蚀行为[J]. 四川大学学报 (工程科学版), 2008, 40(2): 76)
[20] Lin Y Z, Yang D J.Corrosion and Corrosion Control Theory [M]. Beijing: China Petrochemical Press, 2007
[20] (林玉珍, 杨德钧. 腐蚀和腐蚀控制原理 [M]. 北京: 中国石化出版社, 2007)
[21] Wu Y H, Liu T M, Sun C.Effects of simulated acid rain on corrosion behaviour of Q235 steel in acidic soil[J]. Corros. Eng. Sci. Technol., 2010, 45(2): 136
[22] Gerwin W, Baumhauer R.Effect of soil parameters on the corrosion of archaeological metal finds[J]. Geoderma, 2000, 96(1/2): 163
[23] Tamura H.The role of rusts in corrosion and corrosion protection of iron and steel[J]. Corros. Sci., 2008, 50: 1872
[24] Yan M, Sun C, Xu J, et al.Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309
[25] Asami K, Kikuchi M.In-depth distribution of rust on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years[J]. Corros. Sci., 2003, 45: 2671
[26] Weissenrieder J, Leygraf C.In situ studies of filiform corrosion of iron[J]. J. Electrochem. Soc., 2004, 151(3): B165
[27] Neff D, Dillmann P, Bellot-Gurlet L.Corrosion of iron archacological artefacts in soil: Characterization of the corrosion system[J].Corros. Sci., 2005, 47(2): 515
[28] Jia S Y, Zhang B, Sun C, et al.Corrosion regulation of Q235 steel in contaminated soils with different pH values[J]. Corros. Prot., 2009, 30(5): 300
[28] (贾思洋, 张波, 孙成等. Q235钢在不同pH值污染土壤中的腐蚀规律[J]. 腐蚀与防护, 2009, 30(5): 300)
[1] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] ZHU Yichen,LIU Guangming,LIU Xin,PEI Feng,TIAN Xu,SHI Chao. Investigation on Interrelation of Field Corrosion Test and Accelerated Corrosion Test of Grounding Materials in Red Soil Environment[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[3] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[5] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[6] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[7] Libao YU, Maocheng YAN, Binbin WANG, Yun SHU, Jin XU, Cheng SUN. Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[8] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[9] Shuan LIU,Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[10] Min ZHENG,Yanliang HUANG,Du XIFANG,Dongzhu LU,Jie ZHANG,Xiutong WANG,Juan WEN,Yuhong LI,Yuemiao LIU. Corrosion Behavior of Q235 Steel in Simulated Underground Water and Highly Compacted Bentonite Environment of Beishan Area[J]. 中国腐蚀与防护学报, 2016, 36(5): 398-406.
[11] Yangheng LI,Yu ZUO,Yuming TANG,Xuhui ZHAO. Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
[12] Wen CHEN,Chunping GUAN,Shenming YANG,Xiaoan HU. Corrosion Inhibition of Equisetum Ramosissimum Extractive for Carbon Steel in Hydrochloric Acid Solution[J]. 中国腐蚀与防护学报, 2016, 36(2): 177-184.
[13] Mingli LI, Dan LIU, Shuyun CAO, Kun PENG, Ping LIANG, Yanhua SHI, Jianzhou GUI, Feng LIU. Corrosion Inhibition of Q235 Steel in HCl Solution by Brönsted Acid Ionic Liquid[J]. 中国腐蚀与防护学报, 2015, 35(5): 400-406.
[14] CHANG Qinpeng, CHEN Youyuan, SONG Fang, PENG Tao. Corrosion Properties of B30 Cu-Ni Alloy and 316L Stainless Steel in a Heat Pump System[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[15] YAO Huiping, YAN Maocheng, YANG Xu, SUN Cheng. Electrochemical Behavior of X80 Pipeline Steel in the Initial Stage of Corrosion in an Acidic Red Soil[J]. 中国腐蚀与防护学报, 2014, 34(5): 472-476.
No Suggested Reading articles found!