Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (4): 353-358    DOI: 10.11902/1005.4537.2014.155
Current Issue | Archive | Adv Search |
Hydrogen Permeation Behavior of X80 Steel under Cathodic Polarization and Stress
Wang GUO,Weimin ZHAO(),Timing ZHANG,Tianhai DU,Yong WANG
School of Mechanical and Electrical Engineering, China University of Petroleum, Qingdao 266580, China
Download:  HTML  PDF(1425KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydrogen permeation behavior of X80 steel under applied cathodic polarization and stress in 3.5%NaCl+1 g/L Na2S solution was studied by means of a modified D-S cell combined with slow strain rate tensile machine. The effect of polarization potential on hydrogen permeation behavior and the hydrogen evolution potential were acquired by hydrogen permeation test with changing polarization potential. Besides, potentiostatic polarization hydrogen permeation test under different stress levels was performed and then the hydrogen permeation parameters were calculated by the Laplace equation. Results show that under various stress levels, the steady-state hydrogen permeation current density increased as the cathodic polarization potential decreased, and the hydrogen evolution potential was lower than -1000 mV (vs SCE). In the stage of elastic strain, hydrogen trap density decreased and the apparent hydrogen diffusion coefficient increased. After entering the stage of plastic deformation, hydrogen trap density increased and the hydrogen diffusion coefficient gradually decreased due to the generation of dislocation. The concentration of adsorbed hydrogen shows a change tendency opposite to the hydrogen diffusivities.

Key words:  cathodic polarization      X80 steel      hydrogen permeation      stress     

Cite this article: 

Wang GUO,Weimin ZHAO,Timing ZHANG,Tianhai DU,Yong WANG. Hydrogen Permeation Behavior of X80 Steel under Cathodic Polarization and Stress. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 353-358.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.155     OR     https://www.jcscp.org/EN/Y2015/V35/I4/353

Fig.1  SEM image of X80 steel
Fig.2  Equipment for hydrogen permeation test
Fig.3  Cathodic polarization curve of X80 steel in 3.5%NaCl+1 g/L Na2S solution
Fig.4  Hydrogen permeation current density vs time for X80 steel under 0% (a), 60% (b), 90% (c) and 110% (d) Rp0.2 tensile stress
Fig.5  Hydrogen permeation curves of X80 steel under various levels of tensile stress at -1100 mV
Stress level D×10-7 /cm2s-1 C0×10-6 molcm-3
0%Rp0.2 5.049 3.246
60%Rp0.2 7.481 2.571
90%Rp0.2 6.529 2.969
110%Rp0.2 4.328 4.522
Table1  Hydrogen permeation parameters of X80 steel under various levels of tensile stress at -1100 mV
Fig.6  Da-1000/tp curves of X80 steel under various levels of tensile stress
Fig.7  Hydrogen trap density of X80 steel under various levels of tensile stress
[1] Chen R Q. Applicability of X65 steel subsea pepeline in CO2/H2S corrosion environments[J]. Corros. Prot., 2012, 33(5): 371
[2] Li C J, Du M. Research and development of cathodic protection for steels in deep seawater[J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 10 (李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展[J]. 中国腐蚀与防护学报, 2013, 33(1): 10)
[3] Lin Z Q, Ma L, Yan Y G. Effect of cathodic polarization on the susceptibility to hydrogen embrittlement of welding line in high strength hull structural steel[J]. J. Chin. Soc. Corros. Prot., 2011, 31(1): 46 (林召强, 马力, 闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2011, 31(1): 46)
[4] Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels[J]. Corros. Sci., 2006, 48(12): 4378
[5] Sohn S S, Han S Y, Bae J, et al. Effects of microstructure and pipe forming strain on yield strength before and after spiral pipe forming of API X70 and X80 pipeline steel sheets[J]. Mater. Sci. Eng., 2013, A573: 18
[6] ASTMG148-97. Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique[S]
[7] Zhang L, Du M, Liu J F, et al. Effects of polarized potentials on the susceptibility to hydrogen embrittlement of X70 steel in seawater[J]. Mater. Sci. Technol., 2011, 19(5): 96 (张林, 杜敏, 刘吉飞等. 海水中极化电位对X70钢氢脆敏感性的影响[J]. 材料科学与工艺, 2011, 19(5): 96)
[8] Chen Y X, Chang Q G. Effect of traps on diffusivity of hydrogen in 20 g clean steel[J]. Acta Metall. Sin., 2011, 47(5): 548 (陈业新, 常庆刚. 20 g纯净钢中氢陷阱对氢扩散系数的作用[J]. 金属学报, 2011, 47(5): 548)
[9] Yang K, Xian A P, Cao M Z, et al. An improved method for calculating diffusivity of hydrogen[J]. Acta Metall. Sin., 1988, 24(2): 218 (杨柯, 冼爱平, 曹明洲等. 一种计算氢扩散系数的新方法[J]. 金属学报, 1988, 24(2): 218)
[10] Cheng Y F. Analysis of electrochemical hydrogen permeation thro- ugh X-65 pipeline steel and its implications on pipeline stress corrosion cracking[J]. Int. J. Hydrogen Energy, 2006, 32: 1269
[11] Casta?o R P, Ramunni V P, Bruzzoni P. Hydrogen trapping in an API 5L X60 steel[J]. Corros. Sci., 2012, 54: 106
[12] Yen S K, Huang I B. Critical hydrogen concentration for hydrogen-induced blistering on AISI 430 stainless steel[J]. Mater. Chem.Phys., 2003, 80(3): 662
[13] Yu Q. The research of hydrogen sensitive permeation behaviors and environment sensitive fracture mechanism of high strength steel 35CrMo in marine atmosphere [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2008 (于青. 35CrMo高强度钢在海洋大气中的氢渗透行为与环境致脆机理研究 [D]. 青岛: 中国科学院海洋研究所, 2008)
[14] Lv X Q.Diffusion of hydrogen in thick clean steel and effect of hydrogen on mechanical properties [D]. Shanghai: Shanghai University, 2013 (吕学奇. 氢在纯净宽厚板钢中的扩散及对力学性能的影响 [D]. 上海: 上海大学, 2013)
[15] Sung J K, Hwan G J, Kyoo Y K. Effect of tensile stress in elastic and plastic range on hydrogen permeation of high-strength steel in sour environment[J]. Electrochim. Acta, 2012, 78: 139
[1] ZHANG Teng, LIU Jing, HUANG Feng, HU Qian, GE Fangyu. Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[2] GE Fangyu, HUANG Feng, YUAN Wei, XIAO Hu, LIU Jing. Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[3] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[4] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] AI Fangfang, CHEN Yiqing, ZHONG Bin, LI Lin, GAO Peng, SHAN Hongyu, SU Xiandong. Stress Corrosion Cracking Behavior of T95 Oil Well Pipe Steel in Sour Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[7] LI Qing, ZHANG Deping, LI Xiaorong, WANG Wei, SUN Baozhuang, AI Chi. Comparison of Stress Corrosion Behavior of TP110TS and P110 Steel in a Simulated Annular Environment of CO2 Injection Well[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[8] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[9] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[10] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[11] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[12] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[13] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[14] Shuaixing WANG,Nan DU,Daoxin LIU,Jinhua XIAO,Danping DENG. Corrosion Kinetics and the Relevance Analysis for X80 Steel in a Simulated Acidic Soil Solution and Outdoor Red Soil[J]. 中国腐蚀与防护学报, 2019, 39(1): 18-28.
[15] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
No Suggested Reading articles found!