Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (3): 249-252    DOI: 10.11902/1005.4537.2013.107
Current Issue | Archive | Adv Search |
Effect of Zn Addition on Composition of Oxide Scales Formed on 316L Stainless Steel in High-temperature and High-pressured Water
DUAN Zhengang1, ZHANG Lefu1(), WANG Li1, XU Xuelian2, SHI Xiuqiang2
1. School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
2. Shanghai Municipal Key Laboratory of Nuclear Power Engineering, Shanghai Nuclear Engineering Research &Design Institute, Shanghai 200233, China
Download:  HTML  PDF(1128KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Zn addition on the composition of oxide scales formed on 316L stainless steel has been studied in high-temperature and high pressured waters, which aim to simulate the primary loop water environment of pressurized water reactor (PWR). Then, the formed oxide scales on the steel are analyzed by X-ray photoelectron spectroscopy (XPS). The results show that after soaked in water with 10 μg/kg Zn addition at 320 ℃ for 1000 h, compact oxide scales formed on the steel, which consist mainly of (Zn, Fe, Ni)(Cr, Fe)2O4, with an inner portion rich in Cr. However, the Cr rich portion extends gradually outwards to lead the whole oxide scale to become the same with the increasing exposed time.

Key words:  zinc addition      316L stainless steel      PWR      oxide film     
Received:  05 June 2013     
ZTFLH:  TL341  

Cite this article: 

DUAN Zhengang, ZHANG Lefu, WANG Li, XU Xuelian, SHI Xiuqiang. Effect of Zn Addition on Composition of Oxide Scales Formed on 316L Stainless Steel in High-temperature and High-pressured Water. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 249-252.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.107     OR     https://www.jcscp.org/EN/Y2014/V34/I3/249

Fig.1  

动水加锌回路示意图

Fig.2  

316L不锈钢在含锌10 μg/kg条件下的腐蚀增重曲线

Fig.3  

316L不锈钢在320 ℃含锌10 μg/kg溶液中腐蚀1000 h后的全谱

Fig.4  

316L不锈钢在10 μg/kg注锌溶液中分别腐蚀400,600和1000 h后的XPS深度分析谱

Fig.5  

316L不锈钢在320 ℃, 含锌10 μg/kg溶液中腐蚀不同时间后,表面氧化层XPS深度分析的分价态谱

[1] Lister D H, Davidson R D, McAlpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water[J]. Corros. Sci., 1987, 27(2): 113-140
[2] Robertson J. The mechanism of high temperature aqueous corrosion of steel[J]. Corros. Sci., 1989, 29(11): 1275-1291
[3] Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water—effect of chromium content in alloys and dissolved hydrogen[J]. J. Nucl. Sci. Technol., 2008, 45(10): 975-984
[4] Lister D H. Mechanisms of zinc interaction with oxide films in high-temperature water. Presentation at EPRI Meeting. Toronto, 2004
[5] Lister D H. Activity transport and corrosion processes in PWRs[J].Nucl. Energy, 1993, 32(1): 103-114
[6] Stefanov P, Stoychev D, Stoycheva M, et al. XPS and SEM studies of chromium oxide films chemically formed on stainless steel 316 L[J]. Mater. Chem. Phys., 2000, 65(2): 212-215
[7] Huang J, Liu X, Han E-H, et al. Influence of Zn on oxide films on Alloy 690 in borated andlithiated high temperature water[J]. Corros. Sci., 2011, 53(10): 3254-3261
[8] Chen P C, Lee M K. Zinc oxide nanostructures prepared by liquid phase deposition [D]. Kaohsiung: National Sun Yat-Sen University, 2006
[1] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[3] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[4] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[5] Li FENG, Ligong ZHANG, Sizhen LI, Dajiang ZHENG, Changjian LIN, Shigang DONG. Effect of Ferric Citrate on Microstructure and Corrosion Resistance of Micro-arc Oxidation Black Film on Mg-alloy AZ40M[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[6] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[7] Jing LIU,Xiaolu LI,Chongwei ZHU,Tao ZHANG,Guanxin ZENG,Guozhe MENG,Yawei SHAO. Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[8] Jiamei WANG,Hui LU,Zhengang DUAN,Lefu ZHANG,Fanjiang MENG,Xuelian XU. Effect of Temperature on Electrochemical Behavior of Alloy 690 in Simulated PWR Secondary Circuit Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[9] Xiangbin DING,Hua SUN,Guojun YU,Xingtai ZHOU. Corrosion Behavior of Hastelloy N and 316L Stainless Steel in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[10] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[11] CHEN Yu, CHEN Xu, LIU Tong, WANG Guanfu, WANG Yanliang. Effect of Potential on Electrochemical Corrosion Behavior of 316L Stainless Steel in Borate Buffer Solution[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
[12] HAI Zhengyin, WANG Hui, XIN Changsheng, CAI Min, QIN Bo, CHEN Tong. Influence of Zn Addition on Oxide Films Formed on Alloy 690 in High Temperature Water[J]. 中国腐蚀与防护学报, 2014, 34(6): 532-536.
[13] CHANG Qinpeng, CHEN Youyuan, SONG Fang, PENG Tao. Corrosion Properties of B30 Cu-Ni Alloy and 316L Stainless Steel in a Heat Pump System[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[14] SHEN Zhao, ZHANG Lefu, ZHU Fawen, BAO Yichen. Corrosion Behavior of Candidate SCWR Fuel Cladding Materials[J]. 中国腐蚀与防护学报, 2014, 34(4): 301-306.
[15] NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
No Suggested Reading articles found!