Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2012, Vol. 32 Issue (6): 467-472    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF NEGATIVE POTENTIAL ON COMPACTNESS OF PLASMA ELECTROLYTIC OXIDATION COATINGS ON MAGNESIUM ALLOY AZ31B BY ELECTROCHEMICAL IMPEDANCE SPECTRUM
GUO Quanzhong1, ZHANG Wei1, DU Keqin1, WANG Rong2
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy ofScience, Shenyang 110016
2. The Ningbo Branch of Ordnance Science of China, Ningbo 315103
Download:  PDF(2895KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of negative potential of bipolar pulse on the compactness of plasma electrolytic oxidation (PEO) coating on magnesium alloy is not definite nowadays. PEO coatings on magnesium alloy AZ31B were prepared by respectively using unipolar and bipolar pulse whose negative potential was changed while positive potential was at several levels. In order to analyze the effect of negative potential on compactness of PEO coatings, the samples were examined by electrochemical impedance spectrum (EIS) and scanning electron microscope (SEM) to study the variation of equivalent circuit data and the change of macrostructure. The results have shown that negative potential plays an important role on compactness of PEO coatings and suitable negative potential can increase the compactness of coatings. The negative potential of pulse which can prepare compact coatings is always 30 V and stays the same at several levels of positive potential.

Key words:  magnesium alloy      plasma electrolytic oxidation      negative potential      electrochemical impedance spectrum      compactness     
Received:  28 November 2011     
ZTFLH:  TG174.4  

Cite this article: 

GUO Quanzhong, ZHANG Wei, DU Keqin, WANG Rong. EFFECT OF NEGATIVE POTENTIAL ON COMPACTNESS OF PLASMA ELECTROLYTIC OXIDATION COATINGS ON MAGNESIUM ALLOY AZ31B BY ELECTROCHEMICAL IMPEDANCE SPECTRUM. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 467-472.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I6/467

 


[1] Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment[J]. J. Mater. Process. Technol., 2001, 117(3): 381-385

[2] Gray J E, Luan B. Protective coatings on magnesium and its alloys-a critical review [J]. J. Alloys Compd., 2002, 336(1-2): 88-113

[3] Yerokhin A L, Nie X, Layland A, et al. Plasma electrolysis for surface engineering[J]. Surf. Coat. Technol., 1999, 122(2-3): 73-93

[4] Arrabal R, Matykina E, Hashimoto T, et al. Characterization of AC PEO coatings on magnesium alloys[J]. Surf. Coat. Technol., 2009, 203(15): 2207-2220

[5] Chang L R, Cao F H, Cai J S, et al. Influence of electric parameters on MAO of AZ91D magnesium alloy using alternative square-wave power source[J]. Trans. Nonferrou. Met. Soc. China., 2011, 21(2): 307-316

[6] Timoshenko A V, Magurova Y V. Investigation of plasma electrolytic oxidation processes of magnesium alloy MA21 under pulse polarisation modes[J]. Surf. Coat. Technol., 2005, 199(2-3): 135-140

[7] Jin F Y, Chu P K, Xu G D, et al. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes[J]. Mater. Sci. Eng., 2006, A435-436(4): 123-126

[8] Hussein R O, Zhang P, Nie X, et al. The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62[J]. Surf. Coat. Technol., 2011, 206(7): 1990-1997

[9] Wu D, Liu X D, Lyu K. Effects of reverse voltage and oxidation time on coating formation on AZ91D magnesium alloy[J]. Special Cast. Nonferrous Alloys, 2008, 30(7): 564-566

(乌迪, 刘向东, 吕凯. 负向电压与氧化时间对AZ91D微弧氧化膜层形成特性的影响[J]. 特种铸造及有色合金, 2008, 30(7): 564-566)

[10] Liu Z D, Fu H, Sun M J, et al. Influence of negative voltage on coating of magnesium alloy micro-arc oxidation[J]. Light Met., 2009, 15(4):45-48

(刘忠德, 付华, 孙茂坚. 负向电压对镁合金微弧氧化膜层的影响[J]. 轻金属, 2009, 15(4):45-48)

[11] Duan H P, Yan C W, Wang F H. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution[J]. Electrochim. Acta, 2007, 52(15): 5002-5009

[12] Khaselev O, Weiss D, Yahalom J. Structure and composition of anodic films formed on binary Mg-Al alloys in KOH-aluminate solutions under continuous sparking[J]. Corros. Sci., 2001, 43(7): 1295-1307

[13] Bonora P L, Deflorian F, Fedrizzi L. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion[J]. Electrochim. Acta, 1996, 41(7-8): 1073-1082

[14] Jorcin J B, Orazem M E, Pebere N, et al. CPE analysis by local electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2006, 51(8-9): 1473-1479

[15] Sundararajan G, Krishna L R. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology[J]. Surf. Coat. Technol., 2003, 167(2-3): 269-277
[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[3] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[4] OUYANG Yuejun,HU Ting,WANG Jiayin,XIE Zhihui. Electrochemical Deposition and Characterization of Layered Double Hydroxide Film on Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[5] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[6] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[8] Xuejun CUI, Jing PING. Research Progress of Microarc Oxidation for Corrosion Prevention of Mg-alloys[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.
[9] Xinfang ZHANG,Xiaotong OU,Lei LIU,Jinglei LEI,Lingjie LI. Preparation and Protective Properties of Inorganic-organic Hybrid Silane-coatings on Mg-alloy AZ31[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
[10] Li FENG, Ligong ZHANG, Sizhen LI, Dajiang ZHENG, Changjian LIN, Shigang DONG. Effect of Ferric Citrate on Microstructure and Corrosion Resistance of Micro-arc Oxidation Black Film on Mg-alloy AZ40M[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[11] Xuejun CUI,Xin DAI,Bingyu ZHENG,Yingjun ZHANG. Effect of KH-550 Content on Structure and Properties of a Micro-arc Oxidation Coating on Mg-alloy AZ31B[J]. 中国腐蚀与防护学报, 2017, 37(3): 227-232.
[12] Ziyang ZHANG,Shanlin WANG,Hengyu ZHANG,Liming KE. Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[13] Zhenwei GENG,Daihong XIAO. Effect of Zn Addition on Microstructure and Corrosion Property of As-extruded Mg-13Gd-2Cu Alloy[J]. 中国腐蚀与防护学报, 2016, 36(6): 595-603.
[14] Xuejun CUI,Xiaofei LI,Te LI,Xiuzhou LIN. Negative Voltage on Structure and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Magnesium Alloy[J]. 中国腐蚀与防护学报, 2016, 36(2): 137-142.
[15] Xuejun CUI,Ruisong YANG,Mingtian LI. Structure and Properties of a Micro-arc Oxidation Coating Coupled with Nano-Al2O3 Particles on AZ31B Magnesium Alloy[J]. 中国腐蚀与防护学报, 2016, 36(1): 73-78.
No Suggested Reading articles found!