|
|
|
| Effects of Post Heat Treatment on Microstructure and Corrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy Fabricated by Electron Beam Freeform Fabrication |
SU Baoxian1,2,3, GAO Ruxin1, ZHU Guoqiang1( ), JIANG Botao1, WANG Binbin4, LIU Chen5, YU Yongsheng2, WANG Liang1, SU Yanqing1 |
1.National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2.School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China 3.State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China 4.Shandong Laboratory of Aluminum Advanced Manufacturing in Binzhou, Binzhou 256606, China 5.School of Physics, Harbin Institute of Technology, Harbin 150001, China |
|
Cite this article:
SU Baoxian, GAO Ruxin, ZHU Guoqiang, JIANG Botao, WANG Binbin, LIU Chen, YU Yongsheng, WANG Liang, SU Yanqing. Effects of Post Heat Treatment on Microstructure and Corrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy Fabricated by Electron Beam Freeform Fabrication. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 81-91.
|
|
|
Abstract Ti-6Al-3Nb-2Zr-1Mo (Ti80) alloy is a novel home-made Ti-alloy for marine engineering applications. However, conventional forming methods for Ti-alloys present challenges, including complex processes, lengthy procedures, and high costs, etc. Electron beam freeform fabrication (EBF3) technology, utilizing a high-energy electron beam as the heat source and metal wires as raw material for rapid deposition in vacuum conditions, is well-suited for the high-quality rapid forming of highly reactive Ti-alloys ofhigh melting points. Herein, Ti80 alloy was fabricated by using the EBF3 technique. Meanwhile, the influence of post-heat treatment procedures on the microstructure, and the corrosion behavior in 3.5%NaCl solution of the prepared Ti80 alloy was assessed by means of XRD, SEM+EBSD as well as electrochemical measurements. The results reveal that the microstructures of all the Ti80 alloys subjected to three different post-heat treatments are predominantly composed of the α phase, but with three distinct microstructural morphologies: coarse basket weave, fully lamellar and hierarchical structures, respectively, which contrast significantly with the traditional forged state ones (equiaxed structure). Among others, the hierarchical microstructure exhibits the highest corrosion resistance, followed by the fully lamellar microstructure. The coarse basket-weave microstructure demonstrates the lowest corrosion resistance but still outperformed the wrought alloy. The differences in the corrosion resistance are closely related to the thickness of the passivation films formed on the alloys surface. The findings of this study provide a reference for enhancing corrosion resistance by adjusting the heat treatment process to regulate the microstructure for Ti-alloys.
|
|
Received: 11 September 2025
32134.14.1005.4537.2025.290
|
|
|
| Fund: National Natural Science Foundation of China(52401040);State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology(P2024-015);Natural Science Foundation of Heilongjiang Province of China(LH2024E024);Fundamental Research Funds for the Central Universities, Postdoctoral Fellowship Program of CPSF(2025T181140);Fundamental Research Funds for the Central Universities, Postdoctoral Fellowship Program of CPSF(2023M740896);Heilongjiang Postdoctoral Financial Assistance(LBH-Z23168) |
| [1] |
Wang L, Yi D Q, Liu H Q, et al. Effect of Ru on corrosion behavior of Ti-6Al-4V alloy and its mechanism [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 25
|
|
王 乐, 易丹青, 刘会群 等. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究 [J]. 中国腐蚀与防护学报, 2020, 40: 25
|
| [2] |
Su B X, Luo L S, Wang B B, et al. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62: 234
doi: 10.1016/j.jmst.2020.05.058
|
| [3] |
Leon A, Levy G K, Ron T, et al. The effect of hot isostatic pressure on the corrosion performance of Ti-6Al-4 V produced by an electron-beam melting additive manufacturing process [J]. Addit. Manuf., 2020, 33: 101039
|
| [4] |
Bush R W, Brice C A. Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er [J]. Mater. Sci. Eng., 2012, 554A: 12
|
| [5] |
Xu J Q, Zhu J, Fan J K, et al. Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using electron beam freeform fabrication [J]. Vacuum, 2019, 167: 364
doi: 10.1016/j.vacuum.2019.06.030
|
| [6] |
Zhu G Q, Wang Y C, Wang L, et al. Insights into the gradient microstructure and mechanical properties of Ti-6.5Al-2Zr-Mo-V alloy manufactured by electron beam freeform fabrication [J]. Mater. Sci. Eng., 2023, 884A: 145550
|
| [7] |
Su B X, Wang B B, Luo L S, et al. Tuning microstructure and improving the corrosion resistance of Ti-6Al-3Nb-2Zr-1Mo alloy using the electron beam freeform fabrication [J]. Chem. Eng. J., 2022, 444: 136524
doi: 10.1016/j.cej.2022.136524
|
| [8] |
Liu Z, Zhao Z B, Liu J R, et al. Effect of α texture on the tensile deformation behavior of Ti-6Al-4V alloy produced via electron beam rapid manufacturing [J]. Mater. Sci. Eng., 2019, 742A: 508
|
| [9] |
Wang H, Yao Z J, Tao X W, et al. Role of trace boron in the microstructure modification and the anisotropy of mechanical and wear properties of the Ti6Al4V alloy produced by electron beam freeform fabrication [J]. Vacuum, 2020, 172: 109053
doi: 10.1016/j.vacuum.2019.109053
|
| [10] |
Pu Z, Du D, Wang K M, et al. Evolution of transformation behavior and tensile functional properties with process parameters for electron beam wire-feed additive manufactured NiTi shape memory alloys [J]. Mater. Sci. Eng., 2022, 840A: 142977
|
| [11] |
Hemmasian Ettefagh A, Zeng C Y, Guo S M, et al. Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing [J]. Addif. Manuf., 2019, 28: 252
|
| [12] |
Zhang S S, Liu Y C, Xu T W, et al. Effect of build-up direction and annealing on corrosion properties of selected laser melting Ti6Al4V alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 995
|
|
张珊珊, 刘元才, 徐铁伟 等. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 995
doi: 10.11902/1005.4537.2024.220
|
| [13] |
Delpazir M H, Asherloo M, Nasiri Khalil Abad S, et al. Microstructure and corrosion behavior of differently heat-treated Ti-6Al-4V alloy processed by laser powder bed fusion of hydride-dehydride powder [J]. Corros. Sci., 2023, 224: 111495
doi: 10.1016/j.corsci.2023.111495
|
| [14] |
Longhitano G A, Arenas M A, Conde A, et al. Heat treatments effects on functionalization and corrosion behavior of Ti-6Al-4V ELI alloy made by additive manufacturing [J]. J. Alloy. Compd., 2018, 765: 961
doi: 10.1016/j.jallcom.2018.06.319
|
| [15] |
Li Z J, Gou J, Gao J, et al. Microstructural evolution and corrosion resistance of additively manufactured Ti-6Al-4V alloy annular sha-ped components using multistage heat treatment [J]. Mater. Chem. Phys., 2025, 346: 131414
doi: 10.1016/j.matchemphys.2025.131414
|
| [16] |
Su B X, Wang B B, Luo L S, et al. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74: 143
doi: 10.1016/j.jmst.2020.08.066
|
| [17] |
Zhu G Q, Wang L, Su B X, et al. Deciphering the microstructural development and excellent ductility in electron beam wire-fed additive manufacturing of Ti-6Al-3Nb-2Zr-1Mo alloys based on high deposition rate [J]. Addit. Manuf., 2024, 94: 104485
|
| [18] |
Zhu G Q, Wang L, Su B X, et al. Interdependent slip and twinning behaviors for improving cryogenic mechanical properties in Ti-6Al-3Nb-2Zr-1Mo alloy additively manufactured by electron beam wire-fed [J]. Int. J. Plast., 2025, 191: 104390
doi: 10.1016/j.ijplas.2025.104390
|
| [19] |
Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid [J]. Electrochim. Acta, 2014, 135: 526
doi: 10.1016/j.electacta.2014.05.055
|
| [20] |
Li H Y, Zhang Z C, Wang Q C, et al. Formation mechanism of residue water stains on TC4 Ti-alloy surface and conter-measures [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 244
|
|
李晗晔, 张志超, 王群昌 等. 钛合金表面碱洗及水洗留痕形成机制与腐蚀过程控制 [J]. 中国腐蚀与防护学报, 2025, 45: 244
doi: 10.11902/1005.4537.2024.231
|
| [21] |
Bai Y, Gai X, Li S J, et al. Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline [J]. Corros. Sci., 2017, 123: 289
doi: 10.1016/j.corsci.2017.05.003
|
| [22] |
Argade G R, Panigrahi S K, Mishra R S. Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium [J]. Corros. Sci., 2012, 58: 145
doi: 10.1016/j.corsci.2012.01.021
|
| [23] |
Fathi P, Rafieazad M, Mohseni-Sohi E, et al. Corrosion performance of additively manufactured bimetallic aluminum alloys [J]. Electrochim. Acta, 2021, 389: 138689
doi: 10.1016/j.electacta.2021.138689
|
| [24] |
Li J Q, Lin X, Yang Y, et al. Distinction in electrochemical behaviour of Ti6Al4V alloy produced by direct energy deposition and forging [J]. J. Alloy. Compd., 2021, 860: 157912
doi: 10.1016/j.jallcom.2020.157912
|
| [25] |
Wang Z B, Hu H X, Zheng Y G. Synergistic effects of fluoride and chloride on general corrosion behavior of AISI 316 stainless steel and pure titanium in H2SO4 solutions [J]. Corros. Sci., 2018, 130: 203
doi: 10.1016/j.corsci.2017.10.028
|
| [26] |
Walter G W. A review of impedance plot methods used for corrosion performance analysis of painted metals [J]. Corros. Sci., 1986, 26: 681
doi: 10.1016/0010-938X(86)90033-8
|
| [27] |
Yang F F, Kang H J, Guo E Y, et al. The role of nickel in mechanical performance and corrosion behaviour of nickel-aluminium bronze in 3.5 wt.%NaCl solution [J]. Corros. Sci., 2018, 139: 333
doi: 10.1016/j.corsci.2018.05.012
|
| [28] |
Zhang Z C, Lan A D, Zhang M, et al. Effect of Ce on the localized corrosion behavior of non-equiatomic high-entropy alloy Fe40Mn20Cr20Ni20 in 0.5 M H2SO4 solution [J]. Corros. Sci., 2022, 206: 110489
doi: 10.1016/j.corsci.2022.110489
|
| [29] |
Zhao Q C, Pan Z M, Wang X F, et al. Corrosion and passive behavior of Al x CrFeNi3- x (x = 0.6, 0.8, 1.0) eutectic high entropy alloys in chloride environment [J]. Corros. Sci., 2022, 208: 110666
doi: 10.1016/j.corsci.2022.110666
|
| [30] |
Zhang M D, Shi X L, Li Z Y, et al. Corrosion behaviors and mechanism of CrFeNi2 based high-entropy alloys [J]. Corros. Sci., 2022, 207: 110562
doi: 10.1016/j.corsci.2022.110562
|
| [31] |
Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid [J]. Corros. Sci., 2016, 103: 50
doi: 10.1016/j.corsci.2015.11.003
|
| [32] |
Xu W, Lu X, Tian J J, et al. Microstructure, wear resistance, and corrosion performance of Ti35Zr28Nb alloy fabricated by powder metallurgy for orthopedic applications [J]. J. Mater. Sci. Technol., 2020, 41: 191
doi: 10.1016/j.jmst.2019.08.041
|
| [33] |
Li J, Bai Y, Fan Z D, et al. Effect of fluoride on the corrosion behavior of nanostructured Ti-24Nb-4Zr-8Sn alloy in acidulated artificial saliva [J]. J. Mater. Sci. Technol., 2018, 34: 1660
doi: 10.1016/j.jmst.2018.01.008
|
| [34] |
Shukla A K, Balasubramaniam R. Effect of surface treatment on electrochemical behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr alloys in simulated human body fluid [J]. Corros. Sci., 2006, 48: 1696
doi: 10.1016/j.corsci.2005.06.003
|
| [35] |
Pan J, Thierry D, Leygraf C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application [J]. Electrochim. Acta, 1996, 41: 1143
doi: 10.1016/0013-4686(95)00465-3
|
| [36] |
del P B Hernández R, Aoki I V, Tribollet B, et al. Electrochemical impedance spectroscopy investigation of the electrochemical behaviour of copper coated with artificial patina layers and submitted to wet and dry cycles [J]. Electrochim. Acta, 2011, 56: 2801
doi: 10.1016/j.electacta.2010.12.059
|
| [37] |
González J E G, Mirza-Rosca J C. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications [J]. J. Electroanal. Chem., 1999, 471: 109
doi: 10.1016/S0022-0728(99)00260-0
|
| [38] |
Wu B T, Pan Z X, Li S Y, et al. The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution [J]. Corros. Sci., 2018, 137: 176
doi: 10.1016/j.corsci.2018.03.047
|
| [39] |
Amaya-Vazquez M R, Sánchez-Amaya J M, Boukha Z, et al. Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser [J]. Corros. Sci., 2012, 56: 36
doi: 10.1016/j.corsci.2011.11.006
|
| [40] |
Gong X J, Cui Y J, Wei D X, et al. Building direction dependence of corrosion resistance property of Ti-6Al-4V alloy fabricated by electron beam melting [J]. Corros. Sci., 2017, 127: 101
doi: 10.1016/j.corsci.2017.08.008
|
| [41] |
Xu W, Chen M, Lu X, et al. Effects of Mo content on corrosion and tribocorrosion behaviours of Ti-Mo orthopaedic alloys fabricated by powder metallurgy [J]. Corros. Sci., 2020, 168: 108557
doi: 10.1016/j.corsci.2020.108557
|
| [42] |
Jüttner K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces [J]. Electrochim. Acta, 1990, 35: 1501
doi: 10.1016/0013-4686(90)80004-8
|
| [43] |
Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters [J]. Electrochim. Acta, 2010, 55: 6218
doi: 10.1016/j.electacta.2009.10.065
|
| [44] |
Kissi M, Bouklah M, Hammouti B, et al. Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution [J]. Appl. Surf. Sci., 2006, 252: 4190
doi: 10.1016/j.apsusc.2005.06.035
|
| [45] |
Yang J L, Lu Y F, Guo Z H, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5wt.%NaCl solution [J]. Corros. Sci., 2018, 130: 64
doi: 10.1016/j.corsci.2017.10.027
|
| [46] |
Siddiqui M A, Ren L, Macdonald D D, et al. Effect of Cu on the passivity of Ti-xCu (x = 0, 3 and 5wt%) alloy in phosphate-buffered saline solution within the framework of PDM-II [J]. Electrochim. Acta, 2021, 386: 138466
doi: 10.1016/j.electacta.2021.138466
|
| [47] |
Li Y, Xu J. Is niobium more corrosion-resistant than commercially pure titanium in fluoride-containing artificial saliva? [J]. Electrochim. Acta, 2017, 233: 151
doi: 10.1016/j.electacta.2017.03.015
|
| [48] |
Imani A, Asselin E. Fluoride induced corrosion of Ti-45Nb in sulfuric acid solutions [J]. Corros. Sci., 2021, 181: 109232
doi: 10.1016/j.corsci.2020.109232
|
| [49] |
Hsu C H, Mansfeld F. Technical note: concerning the conversion of the constant phase element parameter Y into a capacitance [J]. Corrosion, 2001, 57: 747
doi: 10.5006/1.3280607
|
| [50] |
Li X Q, Wang L W, Fan L, et al. Understanding the effect of fluoride on corrosion behavior of pure titanium in different acids [J]. Corros. Sci., 2021, 192: 109812
doi: 10.1016/j.corsci.2021.109812
|
| [51] |
Pan J, Thierry D, Leygraf C. Electrochemical and XPS studies of titanium for biomaterial applications with respect to the effect of hydrogen peroxide [J]. J. Biomed. Mater. Res., 1994, 28: 113
doi: 10.1002/jbm.v28:1
|
| [52] |
Bolat G, Izquierdo J, Santana J J, et al. Electrochemical characterization of ZrTi alloys for biomedical applications [J]. Electrochim. Acta, 2013, 88: 447
doi: 10.1016/j.electacta.2012.10.026
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|