Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 283-290    DOI: 10.11902/1005.4537.2025.084
Current Issue | Archive | Adv Search |
Erosion-corrosion Characteristics of B10 Cu-Ni Alloy Seawater Control Valve in Flowing Seawater Conditions
MA Xiao1, XU Xuelei1(), TONG Hongtao1, WANG Xin1, ZHAO Mingyu1, WANG Xuan1, SHEN Jie2, LIU Guangyi1()
1.State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2.Suzhou Delan Energy Technology Co. Ltd., Suzhou 215131, China
Cite this article: 

MA Xiao, XU Xuelei, TONG Hongtao, WANG Xin, ZHAO Mingyu, WANG Xuan, SHEN Jie, LIU Guangyi. Erosion-corrosion Characteristics of B10 Cu-Ni Alloy Seawater Control Valve in Flowing Seawater Conditions. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 283-290.

Download:  HTML  PDF(15544KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

B10 Cu-Ni alloy is widely used in marine seawater pipeline systems due to its excellent corrosion and erosion resistance. However, in flowing seawater environments, it still faces challenges such as erosion-corrosion. Herein, the corrosion behavior of a B10 Cu-Ni alloy control valve in actual seawater service conditions was assessed by integrating field service analysis, corrosion morphology characterization, and computational fluid dynamics (CFD) simulations. The results indicate that the distribution of seawater flow velocity inside the control valve is highly non-uniform by different valve opening degrees. In certain regions, the local flow velocity exceeds 8 m/s, significantly surpassing the critical velocity of B10 Cu-Ni alloy, leading to intensified turbulence and shear stress effects. Consequently, high-flow regions develop horseshoe-shaped corrosion pits, while low-flow regions exhibit fish-scale-like corrosion patterns.

Key words:  seawater control valve      B10 Cu-Ni alloy      erosion-corrosion     
Received:  12 March 2025      32134.14.1005.4537.2025.084
ZTFLH:  TG172  

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.084     OR     https://www.jcscp.org/EN/Y2026/V46/I1/283

Fig.1  Schematic diagram of the seawater control valve structure
Fig.2  Schematic diagram of wall thickness measurement points: (a) left view, (b) front view
Fig.3  Wall thickness variation curve at different positions of the valve wall
Fig.4  Metallographic microstructure characterization of B10 Cu-Ni valve: (a) low magnification image, (b) high magnification image
Fig.5  Cross-sectional view of valve wall along 0-point (a) and 6-point (b) directions
Fig.6  Brown corrosion products in severely corroded areas of valve wall at 3-point (a) and 9-point (b) directions
Fig.7  Micromorphology and elemental characterization of brown deposits in severely corroded areas at 3-point (a) and 9-point (b) directions of valve wall
Fig.8  Micromorphology and elemental characterization of corrosion products after acid cleaning in severely corroded areas at 3-point (a) and 9-point (b) directions of valve wall
Fig.9  SolidWorks software simulates the seawater flow velocity distribution field in the valve body under different opening degrees: (a, d) 30% opening, (b, e) 40% opening, (c, f) 50% opening
Fig.10  Schematic diagram of the corrosion mechanism of the valve wall at the 3-point (a, c) and 9-point (b, d) directions during service under seawater erosion
[1] Wu X W, Nie L X, Wu H. Erosion corrosion behavior of several typical pipeline materials in flowing seawater [J]. Mater. Prot., 2021, 54(5): 7
武兴伟, 聂垒鑫, 吴 恒. 几种典型管路材料在流动海水中的冲刷腐蚀行为 [J]. 材料保护, 2021, 54(5): 7
[2] Peng W S, Xing S H, Qian Y, et al. Effect of flowing seawater on corrosion characteristics of passivation film on TA2 pure-Ti pipes [J]. J. Chin. Soc. Corros. Prot., 44: 1038
彭文山, 邢少华, 钱 峣 等. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1038
doi: 10.11902/1005.4537.2023.292
[3] Wang P, Pang K, Zhang H F, et al. Analysis of corrosion failure of bronze cut-off valve in marine seawater pipe system [J]. Mater. Prot., 2018, 51(10): 143
王 培, 逄 昆, 张海峰 等. 船舶海水管路青铜截止阀腐蚀失效分析 [J]. 材料保护, 2018, 51(10): 143
[4] Sun J X, Jin X, Li M, et al. Analysis on causes of corrosion perforation in bronze globe valve of certain offshore oil field seawater system [J]. Mater. Prot., 2017, 50(3): 95
孙吉星, 金 曦, 李 敏 等. 某海上油田海水系统青铜阀门腐蚀穿孔原因分析 [J]. 材料保护, 2017, 50(3): 95
[5] Zhang Z Q, Guo Z L, Lei Z F. Applications of copper alloy in shipbuilding [J]. Dev. Appl. Mater., 2006, 21(5): 43
张智强, 郭泽亮, 雷竹芳. 铜合金在舰船上的应用 [J]. 材料开发与应用, 2006, 21(5): 43
[6] Ma A L, Jiang S L, Zheng Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: Composition/structure and formation mechanism [J]. Corros. Sci., 2015, 91: 245
doi: 10.1016/j.corsci.2014.11.028
[7] Du J, Wang H R, Du M, et al. Electrochemical corrosion behavior of 90/10 Cu-Ni alloy in flowing seawater [J]. Corros. Sci. Prot. Technol., 2008, 20: 12
杜 娟, 王洪仁, 杜 敏 等. B10铜镍合金流动海水冲刷腐蚀电化学行为 [J]. 腐蚀科学与防护技术, 2008, 20: 12
[8] Zhong J T, Zhao J, Lin C X, et al. Electrochemical corrosion behavior of FeMnSi/B10 couple pair in 3.5%NaCl solution at different temperatures [J]. Mater. Prot., 2023, 56: 75
doi: 10.5937/ZasMat1501075T
种建涛, 赵 杰, 林成新 等. FeMnSi/B10偶对在不同温度3.5% NaCl溶液中的电化学腐蚀行为 [J]. 材料保护, 2023, 56: 75
[9] Zhang Z, Yao L A, Gan F X. The effect of surface film on electrochemical behavior of Cu-Ni-alloy [J]. J. Chin. Soc. Corros. Prot., 1987, 7: 143
张 哲, 姚禄安, 甘复兴. 铜镍合金表面膜对其电化学行为的影响 [J]. 中国腐蚀与防护学报, 1987, 7: 143
[10] Lin S P, Li D L, Zhou Q Q, et al. Study on corrosion perforation behavior of copper nickel alloy pipe during service in marine environment [J]. Eng. Fail. Anal., 2023, 153: 107628
doi: 10.1016/j.engfailanal.2023.107628
[11] Cao X W, Zhang H P, Xu Z Y, et al. Study on the erosion-corrosion mechanisms of B10 copper-nickel alloy in sand-containing seawater [J]. Eng. Fail. Anal., 2025, 170: 109289
doi: 10.1016/j.engfailanal.2025.109289
[12] Xia J M, Li Z Y, Jiang J C, et al. Effect of Flow Rates on erosion corrosion behavior of hull steel in real seawater [J]. Int. J. Electrochem. Sci., 2021, 16: 210532
doi: 10.20964/2021.05.60
[13] Du Y F, Yang G M, Chen S Y, et al. Research on the erosion-corrosion mechanism of 304 stainless steel pipeline of mine water in falling film flow [J]. Corros. Sci., 2022, 206: 110531
doi: 10.1016/j.corsci.2022.110531
[14] Wei M M, Yang B J, Liu Y Y, et al. Research progress and prospect on erosion-corrosion of Cu-Ni alloy pipe in seawater [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 513
魏木孟, 杨博均, 刘洋洋 等. Cu-Ni合金管海水冲刷腐蚀研究现状及展望 [J]. 中国腐蚀与防护学报, 2016, 36: 513
doi: 10.11902/1005.4537.2016.123
[15] Zhou Y F, Wang H R. Review of research on the environmental corrosion of ship seawater systems [J]. Dev. Appl. Mater., 2008, 23(3): 16
周永峰, 王洪仁. 船舶海水管系的环境腐蚀研究进展 [J]. 材料开发与应用, 2008, 23(3): 16
[16] Wang X, Li M, Liu F, et al. Effect of temperature on erosion-corrosion behaviorof B10 Cu-Ni alloy pipe [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1329
王 晓, 李 明, 刘 峰 等. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1329
[17] Cao X W, Xu K, Peng W S. Simulation and analysis of liquid-solid two-phase flow erosion failure in pipe bends [J]. Surf. Technol., 2016, 45(8): 124
曹学文, 胥 锟, 彭文山. 弯管液固两相流冲蚀失效模拟分析 [J]. 表面技术, 2016, 45(8): 124
[18] Shen Y X, Zhao H J, Peng H P, et al. Erosion corrosion simulation of liquid-solid two-phase flow in 90 degree vertical bend pipes [J]. Corros. Prot., 2020, 41(1): 50
沈雅欣, 赵会军, 彭浩平 等. 90°竖直弯管的液固两相流冲刷腐蚀模拟 [J]. 腐蚀与防护, 2020, 41(1): 50
[19] Hu Z W, Liu J G, Xing R, et al. Erosion-corrosion behavior of 90° horizontal elbow in single phase flow [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 115
胡宗武, 刘建国, 邢 蕊 等. 单相流条件下90°水平弯管冲刷腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 115
doi: 10.11902/1005.4537.2019.002
[20] Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
朱 娟, 张乔斌, 陈 宇 等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199
[21] Lin Z, Ruan X D, Zhu Z C, et al. Numerical study of solid particle erosion in a cavity with different wall heights [J]. Powder Technol., 2014, 254: 150
doi: 10.1016/j.powtec.2014.01.002
[22] Yang X Y, Guan L, Li Y, et al. Numerical simulation and experimental study on erosioncorrosion of square elbow based on orthogonal test [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 979
杨湘愚, 关 蕾, 李 雨 等. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究 [J]. 中国腐蚀与防护学报, 2022, 42: 979
doi: 10.11902/1005.4537.2021.325
[23] Liu T J, Chen H P, Zhang W F, et al. Accelerated corrosion behavior of B10 Cu-Ni alloy in seawater [J]. J. Mater. Eng., 2017, 45: 31
刘天娇, 陈惠鹏, 张卫方 等. B10铜镍合金海水加速腐蚀行为 [J]. 材料工程, 2017, 45: 31
doi: 10.11868/j.issn.1001-4381.2015.000411
[24] Wang X. Erosion-corrosion behavior of B10 copper-nickel alloy pipe in flowing seawater [D]. Qingdao: China University of Petroleum (East China), 2022
王 晓. B10铜镍合金管在海水中冲刷腐蚀行为研究 [D]. 青岛: 中国石油大学(华东), 2022
[25] Ma A L, Zhang Y M, Jiang S L, et al. Failure analysis of a weld ring of 90/10 cupronickel for marine pipe combination [J]. Corros. Sci. Prot. Technol., 2015, 27: 473
马爱利, 张亚明, 姜胜利 等. 船用焊接B10铜镍环失效分析 [J]. 腐蚀科学与防护技术, 2015, 27: 473
doi: 10.11903/1002.6495.2014.319
[26] Gipon E, Trevin S. 6-Flow-accelerated corrosion in nuclear power plants [A]. Ritter S. Nuclear Corrosion: Research, Progress and Challenges [C]. Amsterdam: Elsevier, 2020: 213
[27] ISO. 21457: 2010 Petroleum, petrochemical and natural gas industries—Materials selection and corrosion control for oil and gas production systems [S]. 2010
[1] MENG Qingyuan, DAI Pengyu, ZHANG Yu, YANG Yanzhe, LI Shendian, LIU Fugui. A Survey of Corrosion Leakage for Air-cooled Tube at Tower Top of Hydrogenated Acidic Water Stripping Unit[J]. 中国腐蚀与防护学报, 2025, 45(5): 1450-1458.
[2] PENG Wenshan, XING Shaohua, QIAN Yao, LIN Cunguo, HOU Jian, ZHANG Dalei. Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[3] ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[4] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[5] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[6] YANG Xiangyu, GUAN Lei, LI Yu, ZHANG Yongkang, WANG Guan, YAN Dejun. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[7] WANG Jiaming, YANG Haodong, DU Min, PENG Wenshan, CHEN Hanlin, GUO Weimin, LIN Cunguo. Corrosion of B10 Cu-Ni Alloy in Seawater Polluted by High Concentration of NH4+[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[8] HU Zongwu, LIU Jianguo, XING Rui, YIN Fabo. Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[9] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[10] Mumeng WEI,Bojun YANG,Yangyang LIU,Xiaoping WANG,Jinghua YAO,Lingqing GAO. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[11] LI Qiang, TANG Xiao, LI Yan. Progress in Research Methods for Erosion-corrosion[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
[12] ZHU Juan, ZHANG Qiaobin, CHEN Yu, ZHANG Zhao, ZHANG Jianqing, CAO Chunan. Progress of Study on Erosion-corrosion[J]. 中国腐蚀与防护学报, 2014, 34(3): 199-210.
[13] QIAO Yanxin, LIU Feihua, REN Ai, JIANG Shengli, ZHENG Yugui. EROSION-CORROSION BEHAVIOR OF HIGH NITROGEN STAINLESS STEEL AND COMMERICAL 321 STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145.
[14] LI Shoubiao, XU Likun, SHEN Chengjin, LI Xiangbo. PERFORMANCE OF EROSION-RESISTANT CERAMIC COATINGS DEPOSITED BY PLASMA SPRAYING[J]. 中国腐蚀与防护学报, 2011, 31(3): 196-201.
[15] JIN Weixian LUO Yanan SONG Shizhe. MARINE EROSION-CORROSION DETECTIONS OF METAL MATERIALS[J]. 中国腐蚀与防护学报, 2008, 28(6期): 337-340.
No Suggested Reading articles found!