Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1450-1458    DOI: 10.11902/1005.4537.2025.048
Current Issue | Archive | Adv Search |
A Survey of Corrosion Leakage for Air-cooled Tube at Tower Top of Hydrogenated Acidic Water Stripping Unit
MENG Qingyuan1, DAI Pengyu2, ZHANG Yu2(), YANG Yanzhe2(), LI Shendian2, LIU Fugui3
1 PetroChina North China Petrochemical Company, Renqiu 062552, China
2 Faculty of Meehanics Shenyang University, Shenyang 110043, China
3 Shenyang Zhongkeweier Corrosion Control Technology Co., Ltd., Shenyang 110180, China
Cite this article: 

MENG Qingyuan, DAI Pengyu, ZHANG Yu, YANG Yanzhe, LI Shendian, LIU Fugui. A Survey of Corrosion Leakage for Air-cooled Tube at Tower Top of Hydrogenated Acidic Water Stripping Unit. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1450-1458.

Download:  HTML  PDF(12762KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A comprehensive survey on the causes of the leakage of the top air cooler of a hydrogenation-type sour water vapor stripping unit, covering aspects such as the process and equipment in question. The air-coolant of the top cooler of the sour water vapor stripping unit consists of H2O, NH3, H2S, NH4HS, and other chemical substances. The failed tube bundles were examined by means of macroscopic observation, metallographic microscope, SEM, and XRD in terms of the microstructure and composition of the tube steel, morphology and composition of corrosion products etc. The results indicated that the hydrogenation-type sour water vapor stripping unit contained higher concentrations of NH3 and H2S, leading to erosion-corrosion that caused progressive thinning of the inner wall of tubes and exacerbated the issue of corrosion and leakage. Analysis revealed that the main cause of the leakage for the air-cooled system was identified as the formation of solid deposits NH4HS on the inner wall of the tube bundle due to condensation, which leads to non-uniform flow velocity of the coolant in the tube, thus leading to localized erosion-corrosion. Finally, corresponding counter measures were also proposed.

Key words:  hydrogenation-type sour water stripping      NH4HS      erosion-corrosion      air-cooled corrosion     
Received:  20 December 2024      32134.14.1005.4537.2025.048
ZTFLH:  TE986  
Corresponding Authors:  ZHANG Yu, E-mail: nihao9985@163.com;
YANG Yanzhe, E-mail: yanzheYang0131@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.048     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1450

ItemCSiMnCrAlMoRePS
09Cr2AlMoRe0.06-0.100.2-0.50.3-0.62.0-2.30.3-0.70.3-0.5Confidential≤ 0.02≤ 0.015
Tube material0.090.350.562.220.520.33~0.20.0110.012
Table 1  Chemical compositions of heat exchanger tube bundle steels
Fig.1  Brief flow chart of leakage location and leakage tube bundle
Fig.2  Specific division diagram of COMSOL surface grids
Fig.3  Cross sections and thickness measurements of sample tubes at different locations and heights: (a) inlet side of the tube bundle, (b) middle section of the tube bundle, (c) outlet side of the tube bundle, (d) exit of 6th floor, (e) exit of 7th floor, (f) exit of 8th floor
Fig.4  Surface morphology of the 7th layer sample tube (a), and comparison of cross-sectional morphologies of four sampling locations (b-e)
Fig.5  Microscopic morphologies of the inner wall (a1-c1), central wall (a2-c2) and outer wall (a3-c3) in the region 1# (a), 2# (b), and 3# (c) in Fig.4
Fig.6  Adhesion morphology of corrosion product layer on the inner wall of the tube
Fig.7  XRD pattern of the sediment inside the pipeline
Fig.8  Schematic diagram of the corrosive environment (a) and software simulation diagrams of erosion (b) for tube bundle[16]
[1] Zhong Y Z, Jin A M. Present situation and progresses of residue processing technology [J]. Acta Petrol. Sin. (Pet. Process. Sect.), 2015, 31: 436
钟英竹, 靳爱民. 渣油加工技术现状及发展趋势 [J]. 石油学报(石油加工), 2015, 31: 436
[2] Gao Y, Gao R M. Brief introduction on the development of Chinese private refineries [J]. Acta Petrol. Sin. (Pet. Process. Sect.), 2017, 33: 785
高 杨, 高瑞明. 中国地方炼油厂发展现状及思考 [J]. 石油学报(石油加工), 2017, 33: 785
[3] Gao M, Bo D C, Chen J B. Research and analysis of sour water stripping unit [J]. Contemp. Chem. Ind., 2018, 47: 1426
高 明, 薄德臣, 陈建兵. 酸性水汽提装置研析 [J]. 当代化工, 2018, 47: 1426
[4] Yu F, Song Q H, Zheng B H, et al. A typical process of refinery sour water stripper unit and its design parameters [J]. Petrochem. Technol., 2014, 43: 555
于 峰, 宋庆慧, 郑宝翬 等. 炼油厂酸性水汽提装置的典型流程和工艺设计参数的选择 [J]. 石油化工, 2014, 43: 555
[5] Sun C S, Jiang H, Gong H, et al. Analysis of foulant of heat exchangers and stripper plates in refinery sour water stripping unit [J]. Petrochem. Technol., 2016, 45: 719
孙崇帅, 姜 恒, 宫 红 等. 炼油厂酸性水汽提装置换热器及汽提塔塔盘积垢的分析 [J]. 石油化工, 2016, 45: 719
[6] Yan B, Wei C Y. Cause analysis and countermeasures of corrosion and leakage of air cooler tube bundle at the top of sour water stripper [J]. Sulphuric Acid Ind., 2021, (12): 52
颜 兵, 魏城瑶. 酸性水汽提塔顶空气冷却器管束腐蚀泄漏原因分析及对策 [J]. 硫酸工业, 2021, (12): 52
[7] Chen L C, Yang J F, Liu W B, et al. Corrosion and protection of sour water stripper unit [J]. Total Corros. Control, 2015, 29(5): 50
陈良超, 杨剑锋, 刘文彬 等. 酸性水汽提装置腐蚀及防护分析 [J]. 全面腐蚀控制, 2015, 29(5): 50
[8] Li Z M, Chen X D, Rong R. Production practice of reforming sour water stripping unit in refinery [J]. Sulphuric Acid Ind., 2023, (6): 56
李治明, 陈贤德, 荣 荣. 炼厂酸性水汽提装置改造生产实践 [J]. 硫酸工业, 2023, (6): 56
[9] Shokri A. An investigation of corrosion and sedimentation in the air cooler tubes of benzene drying column in linear alkyl benzene production plant [J]. Chem. Pap., 2019, 73: 2265
doi: 10.1007/s11696-019-00776-z
[10] Ravindranath K, Alazemi R. Failure of stainless steel 304L air cooler tubes due to stress corrosion cracking caused by organic chlorides [J]. Eng. Fail. Anal., 2019, 102: 79
doi: 10.1016/j.engfailanal.2019.04.029
[11] Yang H C, Yuan H, Wang H Y, et al. Research on detection of pipeline crack defects based on COMSOL ultrasonic simulation [J]. Petrochem. Ind. Technol., 2024, 31(11): 112
杨海聪, 袁 浩, 王浩宇 等. 基于COMSOL超声模拟仿真检测管道裂纹缺陷的研究 [J]. 石化技术, 2024, 31(11): 112
[12] Jia J H, Luo C, Sun Z H, et al. Simulation and analysis of typical connected parts for areoengine compressor [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 979
贾静焕, 骆 晨, 孙志华 等. 航空发动机典型连接件腐蚀仿真分析 [J]. 中国腐蚀与防护学报, 2024, 44: 979
doi: 10.11902/1005.4537.2023.293
[13] Ling D, He K, Yu L, et al. Finite element simulation of pitting corrosion of super 13Cr stainless steel in high-temperature and high-pressured CO2 containing artificial formation waters [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 303
凌 东, 何 坤, 余 靓 等. 高温高压CO2环境中超级13Cr不锈钢点蚀有限元模拟 [J]. 中国腐蚀与防护学报, 2024, 44: 303
[14] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Steel—Determination of content of nonmetallic inclusions—Micrographic method using standards diagrams [S]. Beijing: Standards Press of China, 2005
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 钢中非金属夹杂物含量的测定标准评级图显微检验法 [S]. 北京: 中国标准出版社, 2005
[15] Liu G Q, Zheng Y G, Jiang S L, et al. Stability and erosion corrosion behavior of corrosion product film of Q235 carbon steel and Cr5Mo low alloy steel in simulated oil refinery media [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 122
刘贵群, 郑玉贵, 姜胜利 等. 模拟炼油环境中Q235钢和Cr5Mo钢表面硫化物膜稳定性及动态冲刷腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 122
[16] Wang L. Analysis on corrosion cause of the sour water overhead piping [J]. Total Corros. Control, 2013, 27(7): 30
王 乐. 酸性水汽提塔塔顶管线腐蚀分析 [J]. 全面腐蚀控制, 2013, 27(7): 30
[17] Cao J. Ammonium bisulfide deposition mechanism and numerical analysis of multi-physics coupling in reactor effluent air cooler [D]. Hangzhou: Zhejiang Sci-Tech University, 2011
曹 晶. 加氢空冷系统硫氢化铵流动沉积机理及多场耦合数值分析 [D]. 杭州: 浙江理工大学, 2011
[18] You X F, Tang Z S, Yang X Y, et al. Influencing factors analysis and preventive measures for safe and stable operation of acid water stripping unit [J]. Henan Chem. Indust., 2024, 41(12): 50
游咸丰, 唐战胜, 杨晓燕 等. 酸性水汽提装置安全平稳运行影响因素分析及预防措施 [J]. 河南化工, 2024, 41(12): 50
[19] Jin H Z, Yu C Y, Ji Y, et al. Prediction model of erosion damage characteristics of NH3-H2S environment wax oil hydrogenated air cooler outlet pipeline system [J]. Acta Petrol. Sin. (Pet. Process. Sect.), 2022, 38: 128
金浩哲, 俞晨炀, 吉 洋 等. NH3-H2S环境蜡油加氢空冷出口管道冲蚀损伤特性预测模型 [J]. 石油学报(石油加工), 2022, 38: 128
[20] Toba K, Kawano K, Yamamoto K, et al. The application of process analyses to prevent corrosion in sour water stripper overhead cooler tubes [A]. Corrosion 2005 [C]. Houston, 2005: NACE-05569
[21] Ou G F, Ren H Y, Wang K X, et al. Erosion-corrosion behaviors of 10# carbon steel in NH4HS solution [J]. Acta Petrol. Sin. (Pet. Process. Sect.), 2014, 30: 928
偶国富, 任海燕, 王宽心 等. 10#碳钢在NH4HS溶液中的冲蚀规律 [J]. 石油学报(石油加工), 2014, 30: 928
[22] Jiang A G, Zhang J W, Xin Y N, et al. Numerical simulation of multiphase erosion-corrosion of tubes bundles of hydrocracking air cooler [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 192
姜爱国, 张建文, 辛亚男 等. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟 [J]. 中国腐蚀与防护学报, 2019, 39: 192
doi: 10.11902/1005.4537.2018.003
[23] Ou G F. Study on simulation of multiphase flow and prediction of erosion attack breakage for REAC pipes [D]. Hangzhou: Zhejiang University, 2004: 8
偶国富. 加氢裂化空冷器管束多相流模拟与冲蚀破坏预测研究 [D]. 杭州: 浙江大学, 2004: 8
[24] Lu Z G. Study on inhibition efficiency of compound corrosion inhibitor in REAC [D]. Beijing: Beijing University of Chemical Technology, 2008
卢志刚. 加氢裂化空冷器系统中复合缓蚀剂的性能研究 [D]. 北京: 北京化工大学, 2008
[25] Jia T. Study on process optimization of acidic water stripping device [J]. Petrochem. Ind. Technol., 2019, 26(12): 15
贾 涛. 酸性水汽提装置工艺流程优化研究 [J]. 石化技术, 2019, 26(12): 15
[1] PENG Wenshan, XING Shaohua, QIAN Yao, LIN Cunguo, HOU Jian, ZHANG Dalei. Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[2] ZHANG Xinyi, LI Cong, WANG Yuxi, HUANG Mei, ZHU Huiping, LIU Fang, LIU Yang, NIU Fenglei. Research Progress on Liquid Metal Corrosion Behavior of Structural Steels for Lead Fast Reactor[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[3] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[4] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[5] YANG Xiangyu, GUAN Lei, LI Yu, ZHANG Yongkang, WANG Guan, YAN Dejun. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[6] HU Zongwu, LIU Jianguo, XING Rui, YIN Fabo. Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[7] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[8] Mumeng WEI,Bojun YANG,Yangyang LIU,Xiaoping WANG,Jinghua YAO,Lingqing GAO. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[9] LI Qiang, TANG Xiao, LI Yan. Progress in Research Methods for Erosion-corrosion[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
[10] ZHU Juan, ZHANG Qiaobin, CHEN Yu, ZHANG Zhao, ZHANG Jianqing, CAO Chunan. Progress of Study on Erosion-corrosion[J]. 中国腐蚀与防护学报, 2014, 34(3): 199-210.
[11] QIAO Yanxin, LIU Feihua, REN Ai, JIANG Shengli, ZHENG Yugui. EROSION-CORROSION BEHAVIOR OF HIGH NITROGEN STAINLESS STEEL AND COMMERICAL 321 STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145.
[12] LI Shoubiao, XU Likun, SHEN Chengjin, LI Xiangbo. PERFORMANCE OF EROSION-RESISTANT CERAMIC COATINGS DEPOSITED BY PLASMA SPRAYING[J]. 中国腐蚀与防护学报, 2011, 31(3): 196-201.
[13] JIN Weixian LUO Yanan SONG Shizhe. MARINE EROSION-CORROSION DETECTIONS OF METAL MATERIALS[J]. 中国腐蚀与防护学报, 2008, 28(6期): 337-340.
[14] . Erosion-Corrosion Characteristic of High Velocity Arc Sprayed FeCrAl Coating and 3Cr13 Coating[J]. 中国腐蚀与防护学报, 2008, 28(4): 225-230 .
[15] . Corrosion failure analysis of thin-film evaporator for caprolactam production[J]. 中国腐蚀与防护学报, 2007, 27(3): 181-185 .
No Suggested Reading articles found!