Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 533-547    DOI: 10.11902/1005.4537.2024.123
Current Issue | Archive | Adv Search |
A Review on Corrosion and Protection of Mg-alloy in Marine Environment
WEI Ran1,2,3, JIANG Quantong1,2,3(), SUN Chen4, WANG Weiwei4, DUAN Jizhou1,2,3, HOU Baorong1,2,3
1.Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2.Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
4.China Quality Certification Centre Qingdao Branch, Qingdao 266061, China
Cite this article: 

WEI Ran, JIANG Quantong, SUN Chen, WANG Weiwei, DUAN Jizhou, HOU Baorong. A Review on Corrosion and Protection of Mg-alloy in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 533-547.

Download:  HTML  PDF(6034KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-alloy have the advantages of low density and high specific strength, which are as green metal structural materials in the 21st century and show great potential in the application in marine environment. However, the poor corrosion resistance and unique marine environment limit their application. In this work, the corrosion behavior and corrosion mechanism of Mg-alloy in marine atmospheric environment, seawater immersion environment and coastal beach environment are reviewed. The effect of humidity, temperature and pollutants on the corrosion behavior of Mg-alloy in atmospheric environment and the effect of Cl- on their corrosion behavior in seawater environment are analyzed. The corrosion mechanism of magnesium anode in seawater battery was introduced. The effect of microbial corrosion on metal corrosion behavior in beach environment is also briefly introduced. According to the application of Mg-alloy in marine environment, how to improve the corrosion resistance and service life of Mg-alloys is briefly introduced. Generally, there are two main methods to improve the corrosion resistance of Mg-alloys in marine atmospheric environment: one is to improve the corrosion resistance of Mg-alloy by alloying with other metal elements and changing the processing technology to alter the microstructure of Mg-alloys; the other is to form a chemical protective film on the surface of the Mg-alloys. Besides, Mg-alloys are mainly used as anode materials for seawater batteries in seawater environment, correspondingly, their electrochemical properties can be improved by adding other metal elements to Mg-alloys. Mg-alloy can be used as sacrificial anode material for pipelines in tidal flat environment, for that circumstance, mainly by adding metal elements to improve its cathodic protection efficiency. However, there are few studies on improving the protection efficiency of Mg-sacrificial anode in tidal flat environment, which needs further research in the future. This paper aims to provide a reference for the application and protection of Mg-alloys in the marine environment.

Key words:  Mg-alloy      marine environment      coastal beaches environment      seawater environment      corrosion performance      protection technique     
Received:  13 April 2024      32134.14.1005.4537.2024.123
ZTFLH:  TG174  
Fund: Hainan Sanya Yazhou Bay Science and Technology City Science and Technology Innovation Joint Project(2021CXLH0005);China Engineering Science and Technology Development Strategy Hai-nan Research Institute Consulting Research Project(22-HN-XZ-02)
Corresponding Authors:  JIANG Quantong, E-mail: jiangquantong@qdio.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.123     OR     https://www.jcscp.org/EN/Y2025/V45/I3/533

Fig.1  Main factors affecting the corrosion resistance of magnesium alloys in different environments
Fig.2  Atmospheric corrosion mechanism of magnesium alloys
Fig.3  Electrochemical performances of AM60 alloy in thesolutions containing different concentrations of Cl-: (a) corrosion current density curves, (b) polarization curves, (c) corresponding corrosion models[33]
Fig.4  Schematic illustrations of galvanic corrosion process between aluminum anode and carbon steel in enriched artificial seawaters without (a) and with (b) SRB[49]
Fig.5  Principle diagrams of surface treatment technologies: (a) micro-arc oxidation, (b) magnetron sputtering, (c) thermal spraying
Fig.6  Working principle diagram of seawater battery (a) and diagram of discharge device (b)[82]
Fig.7  Performances of seawater activated Mg-CuCl batteries with AZ63, AZI and AZIT anodes in 3.5%NaCl solution at ambient temperature: (a) current density vs. cell voltage curves, (b) current density vs. power density curves, (c) schematic diagrams of the dissolution-reprecipitation mechanism of magnesium alloys activated by indium[87]
Fig.8  Working principle diagram of sacrificial anode protection method
Using environmentTypes of magnesium alloysApplicationPerformance improvement methods
Marine atmospheric environmentAZ series; VW series magnesium alloysIt is used in aerospace fields, aircraft engine shell and other partsAdding other metal elements or changing the processing technology to adjust the second phase; protective coatings were prepared on the surface of the alloy
Seawater immersion environmentAZ series; AE series such as Mg-Al-Zn-In magnesium alloysIt is mainly used as anode material for seawater batteryAddition of other metal elements to the alloy or heat treatment and plastic processing were used to improve the anode efficiency
Coastal beach environmentPure magnesium; Mg-Mn series; Mg-Al-Zn-Mn series magnesium alloysSacrificial anode material used for cathodic protection of buried pipelinesThe addition of other metal elements changes the grain size and the composition of the second phase to improve the current efficiency and corrosion uniformity
Table 1  Types and performance improvement methods of magnesium alloys used in different environments
[1] Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnesium Alloys, 2019, 7: 536
[2] Hu W Y, Le Q C, Zhang Z Q, et al. Numerical simulation of DC casting of AZ31 magnesium slab at different casting speeds [J]. J. Magnesium Alloys, 2013, 1: 88
[3] Huang Y D, Zhang Y P, Song J F, et al. Development and prospects of degradable magnesium alloys for structural and functional applications in the fields of environment and energy [J]. J. Magnesium Alloys, 2023, 11: 3926
[4] Hasan M, Begum L. Semi-continuous casting of magnesium alloy AZ91 using a filtered melt delivery system [J]. J. Magnesium Alloys, 2015, 3: 283
[5] Bai J Y, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: a review [J]. J. Magnesium Alloys, 2023, 11: 3609
[6] Zhao Z, Zong L S, Liu C D, et al. A novel Mg(OH)2/MgF x (OH)1- x composite coating on biodegradable magnesium alloy for coronary stent application [J]. Corros. Sci., 2022, 208: 110627
[7] Wang G G, Weiler J P. Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications [J]. J. Magnesium Alloys, 2023, 11: 78
[8] Luo C, Wu X, Song H Q, et al. Analysis of application requirements and research directions of magnesium alloys for aircraft engines serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 787
骆 晨, 吴 雄, 宋汉强 等. 海洋环境服役飞机发动机镁合金使用要求和研究方向分析 [J]. 中国腐蚀与防护学报, 2023, 43: 787
[9] Chen J L, Sun L, Wang K, et al. Research and applications of rechargeable seawater battery [J]. J. Energy Storage, 2024, 76: 109659
[10] Mei D, Li Y Q, Tian Y S, et al. The effect of selected corrosion inhibitors on localized corrosion of magnesium alloy: The expanded understanding of "inhibition efficiency" [J]. Corros. Sci., 2024, 226: 111650
[11] Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion [J]. Adv. Eng. Mater., 2015, 17: 400
[12] Liu M Y, Jiang J H, Gao Z, et al. Research progress of sacrificial Mg alloy anode for corrosion protection of marine equipment [J]. Mod. Transp. Metall. Mater., 2022, 2(1): 61
刘明耀, 江静华, 高 正 等. 海洋装备防腐用镁合金牺牲阳极的研究进展 [J]. 现代交通与冶金材料, 2022, 2(1): 61
[13] Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
[14] Peng C, Cao G W, Gu T Z, et al. The effect of dry/wet ratios on the corrosion process of the 6061 Al alloy in simulated Nansha marine atmosphere [J]. Corros. Sci., 2023, 210: 110840
[15] Xiao K, Dong C F, Li X G, et al. Atmospheric corrosion behavior of AZ91D magnesium alloys in initial stages [J]. Chin. J. Rare Met., 2006, 30: 595
肖 葵, 董超芳, 李晓刚 等. AZ91D镁合金在大气环境中初期腐蚀行为的研究 [J]. 稀有金属, 2006, 30: 595
[16] Jönsson M, Persson D, Leygraf C. Atmospheric corrosion of field-exposed magnesium alloy AZ91D [J]. Corros. Sci., 2008, 50: 1406
[17] Guo C L, Zheng Q F, Zhao Y H, et al. Marine atmospheric corrosion behavior of AZ31 magnesium alloy [J]. Chin. J. Rare Met., 2013, 37: 21
郭初蕾, 郑弃非, 赵月红 等. AZ31镁合金在海洋大气环境中的腐蚀行为 [J]. 稀有金属, 2013, 37: 21
[18] Jiang Q T. The research of EW75 magnesium alloy on the atmospheric corrosion behaviors [D]. Beijing: General Research Institute for Nonferrous Metals, 2014
蒋全通. EW75镁合金大气腐蚀行为研究 [D]. 北京: 北京有色金属研究总院, 2014
[19] LeBozec N, Jönsson M, Thierry D. Atmospheric corrosion of magnesium alloys: influence of temperature, relative humidity, and chloride deposition [J]. Corrosion, 2004, 60: 356
[20] Esmaily M, Shahabi-Navid M, Svensson J E, et al. Influence of temperature on the atmospheric corrosion of the Mg-Al alloy AM50 [J]. Corros. Sci., 2015, 90: 420
[21] Wang Y, Liu Y H, Mu X L, et al. Effect of environmental factors on material transfer in thin liquid film during atmospheric corrosion process in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1015
汪 洋, 刘元海, 慕仙莲 等. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1015
[22] Lindström R, Johansson L G, Thompson G E, et al. Corrosion of magnesium in humid air [J]. Corros. Sci., 2004, 46: 1141
[23] Liu H G, Cao F Y, Song G L, et al. Review of the atmospheric corrosion of magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35: 2003
doi: 10.1016/j.jmst.2019.05.001
[24] Yang L J, Li Y F, Wei Y H, et al. Atmospheric corrosion of field-exposed AZ91D Mg alloys in a polluted environment [J]. Corros. Sci., 2010, 52: 2188
[25] Zhao C, Cao F Y, Song G L. Corrosivity of haze constituents to pure Mg [J]. J. Magnesium Alloys, 2020, 8: 150
[26] Yu R H, Cao F Y, Zhao C, et al. The marine atmospheric corrosion of pure Mg and Mg alloys in field exposure and lab simulation [J]. Corros. Eng. Sci. Technol., 2020, 55: 609
[27] Jiang Q T, Lu D Z, Wang N, et al. The corrosion behavior of Mg-Nd binary alloys in the harsh marine environment [J]. J. Magnesium Alloys, 2021, 9: 292
[28] Cui Z Y, Li X G, Xiao K, et al. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment [J]. Corros. Sci., 2013, 76: 243
[29] Merino M C, Pardo A, Arrabal R, et al. Influence of chloride ion concentration and temperature on the corrosion of Mg-Al alloys in salt fog [J]. Corros. Sci., 2010, 52: 1696
[30] Jönsson M, Persson D, Thierry D. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D [J]. Corros. Sci., 2007, 49: 1540
[31] Wu J J, Xu M, Wang P, et al. Impact of nitrate addition on EH40 steel corrosion in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 765
吴佳佳, 徐 鸣, 王 鹏 等. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 765
doi: 10.11902/1005.4537.2023.150
[32] Xu K, Wang B J, Sun J. Research progress on the influence of anions in typical corrosive media on corrosion behavior of magnesium alloys [J]. Mater. Prot., 2022, 55(12): 166
许 凯, 王保杰, 孙 杰. 典型腐蚀介质中阴离子对镁合金腐蚀行为影响的研究进展 [J]. 材料保护, 2022, 55(12): 166
[33] Liu W D, Cao F H, Chen A, et al. Effect of chloride ion concentration on electrochemical behavior and corrosion product of AM60 magnesium alloy in aqueous solutions [J]. Corrosion, 2012, 68: 045001
[34] Yang L H, Lin C G, Gao H P, et al. Corrosion behaviour of AZ63 magnesium alloy in natural seawater and 3.5wt.%NaCl aqueous solution [J]. Int. J. Electrochem. Sci., 2018, 13: 8084
[35] Jaume J, Marques M J F, Délia M L, et al. Surface modification of 5083 aluminum-magnesium induced by marine microorganisms [J]. Corros. Sci., 2022, 194: 109934
[36] Marques M J F, Benedetti A, Castelli F, et al. Influence of natural seawater variables on the corrosion behaviour of aluminium-magnesium alloy [J]. Bioelectrochemistry, 2023, 149: 108321
[37] Lin M X, Zhang J, Jiang Q T, et al. Effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in natural seawater [J]. J. Mater. Eng., 2020, 48(1): 98
林梦晓, 张 杰, 蒋全通 等. 海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响 [J]. 材料工程, 2020, 48(1): 98
doi: 10.11868/j.issn.1001-4381.2018.000157
[38] Gu Y X, Jiang J H, Xie Q Y, et al. Advances in magnesium alloys as anodes of seawater battery [J]. Surf. Technol., 2022, 51(4): 1
谷亚啸, 江静华, 谢秋媛 等. 海水电池用镁合金阳极的研究进展 [J]. 表面技术, 2022, 51(4): 1
[39] Deng M, Wang L Q, Höche D, et al. Clarifying the decisive factors for utilization efficiency of Mg anodes for primary aqueous batteries [J]. J. Power Sources, 2019, 441: 227201
[40] Zhang J, Lan X, Wang J, et al. Current status and prospect of influence of SRB on the corrosion of magnesium anodes of buried pipeline in mudflat environment [J]. Equip. Environ. Eng., 2021, 18(12): 51
张 杰, 兰 啸, 王 佳 等. 滩涂环境SRB对涉海管线镁阳极腐蚀影响现状与展望 [J]. 装备环境工程, 2021, 18(12): 51
[41] Li Y T. Corrosion behaviour of steel in beach soil along Bohai Bay [J]. Corros. Eng. Sci. Technol., 2009, 44: 91
[42] Guan F, Duan J Z, Zhai X F, et al. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36: 55
doi: 10.1016/j.jmst.2019.07.009
[43] Zhou E Z, Wang J J, Moradi M, et al. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing [J]. J. Mater. Sci. Technol., 2020, 48: 72
doi: 10.1016/j.jmst.2020.01.055
[44] Liu H W, Cheng Y F. Microbial corrosion of initial perforation on abandoned pipelines in wet soil containing sulfate-reducing bacteria [J]. Colloids Surf., 2020, 190B: 110899
[45] Sun D X, Wu M, Xie F, et al. Hydrogen permeation behavior of X70 pipeline steel simultaneously affected by tensile stress and sulfate-reducing bacteria [J]. Int. J. Hydrog. Energy, 2019, 44: 24065
[46] Wang D, Xie F, Wu M, et al. The effect of sulfate-reducing bacteria on hydrogen permeation of X80 steel under cathodic protection potential [J]. Int. J. Hydrog. Energy, 2017, 42: 27206
[47] Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
doi: 10.1016/j.jmst.2018.05.020
[48] Li Y C, Feng S Q, Liu H M, et al. Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM [J]. Corros. Sci., 2020, 167: 108512
[49] Zhang T S, Wang Z Y, Qiu Y B, et al. “Electrons-siphoning” of sulfate reducing bacteria biofilm induced sharp depletion of Al-Zn-In-Mg-Si sacrificial anode in the galvanic corrosion coupled with carbon steel [J]. Corros. Sci., 2023, 216: 111103
[50] Purwasena I A, Astuti D I, Ardini Fauziyyah N, et al. Inhibition of microbial influenced corrosion on carbon steel ST37 using biosurfactant produced by Bacillus sp [J]. Mater. Res. Express, 2019, 6: 115405
[51] Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
[52] Fang S J, Liu Y H, Wang Q, et al. Influence of SRB on corrosion of AZ91 magnesium alloy in solution containing chlorine ions [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2008, 36(7): 92
方世杰, 刘耀辉, 王 强 等. SRB对AZ91镁合金在含氯离子溶液中腐蚀的影响 [J]. 华南理工大学学报(自然科学版), 2008, 36(7): 92
[53] Liu Y H, Wang Q, Song Y L, et al. A study on the corrosion behavior of Ce-modified cast AZ91 magnesium alloy in the presence of sulfate-reducing bacteria [J]. J. Alloy. Compd., 2009, 473: 550
[54] Sun D X, Wu M, Xie F. Effect of sulfate-reducing bacteria and cathodic potential on stress corrosion cracking of X70 steel in sea-mud simulated solution [J]. Mater. Sci. Eng., 2018, 721A: 135
[55] Davoodi A, Pakshir M, Babaiee M, et al. A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media [J]. Corros. Sci., 2011, 53: 399
[56] Ma H Y, Cheng X L, Li G Q, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions [J]. Corros. Sci., 2000, 42: 1669
[57] Zhang X, Zhang K. Research progress on corrosion behavior and mechanism of magnesium alloy [J]. Corros. Sci. Prot. Technol., 2015, 27: 78
张 新, 张 奎. 镁合金腐蚀行为及机理研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 78
[58] Meng W Q. study on composition optimization, static and dynamic mechanical properties and corrosion behavior of AM series magnesium alloys [D]. Chongqing: Chongqing University, 2018
蒙万秋. AM系镁合金成分优化、静动态力学性能及腐蚀行为研究 [D]. 重庆: 重庆大学, 2018
[59] Bahmani A, Arthanari S, Shin S K. Formulation of corrosion rate of magnesium alloys using microstructural parameters [J]. J. Magnesium Alloys, 2020, 8: 134
[60] Wang B J, Luan J Y, Wang S D, et al. Research progress on stress corrosion cracking behavior of magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 89
王保杰, 栾吉瑜, 王士栋 等. 镁合金应力腐蚀开裂行为研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 89
doi: 10.11902/1005.4537.2018.186
[61] Jiang Q T, Lv X Z, Lu D Z, et al. The corrosion behavior and mechanical property of the Mg-7Y-xNd ternary alloys [J]. J. Magnesium Alloys, 2018, 6: 346
[62] Liu Y X, Chen L P, Zhou Q, et al. Effects of cold spraying and cold spraying-anodizing treatment on the corrosion resistance of WE43 magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2023, 43: 1561
刘曜熙, 陈乐平, 周 全 等. 冷喷涂及阳极氧化复合处理对WE43镁合金耐蚀性能的影响 [J]. 特种铸造及有色合金, 2023, 43: 1561
[63] Shi H, Sun Q, Jiang Q T, et al. Effect of ytterbium oxide on the structure and corrosion resistance of micro-arc oxide coatings of Mg-Nd binary alloys in the natural seawater [J]. Corros. Sci., 2023, 221: 111332
[64] Kousis C, Keil P, Hamilton N M, et al. The kinetics and mechanism of filiform corrosion affecting organic coated Mg alloy surfaces [J]. Corros. Sci., 2022, 206: 110477
[65] Wu P P, Song G L, Zhu Y X, et al. The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles [J]. Corros. Sci., 2021, 184: 109410
[66] Jiang Q T, Lu D Z, Cheng L R, et al. The corrosion characteristic and mechanism of Mg-5Y-1.5Nd-xZn-0.5Zr (x =0, 2, 4, 6wt%) alloys in marine atmospheric environment [J]. J. Magnesium Alloys, 2024, 12: 139
[67] Chen Y W, Zhou J, Liu Y, et al. Research progress in corrosion mechanism and regulation of magnesium alloys [J]. Chin. J. Nonferrous Met., 2023, 33: 3152
陈雅薇, 周 济, 刘 勇 等. 镁合金腐蚀机制与调控研究进展 [J]. 中国有色金属学报, 2023, 33: 3152
[68] Li Y G, Wei Y H, Hou L F, et al. Atmospheric corrosion of AM60 Mg alloys in an industrial city environment [J]. Corros. Sci., 2013, 69: 67
[69] Yang Y, Deng Y C, Zhang R F, et al. Influence of β-Mg17Al12 and Al-Mn intermetallic compounds on the corrosion behaviour of cast and solution treated Mg-Al-Zn-Mn alloys [J]. Corros. Sci., 2023, 222: 111363
[70] Zheng T X, Hu Y B, Yang S W. Effect of grain size on the electrochemical behavior of pure magnesium anode [J]. J. Magnesium Alloys, 2017, 5: 404
[71] Zhu Q C, Li Y X, Cao F Y, et al. Towards development of a high-strength stainless Mg alloy with Al-assisted growth of passive film [J]. Nat. Commun., 2022, 13: 5838
doi: 10.1038/s41467-022-33480-w pmid: 36192418
[72] Xie Y, Liu T, Wang W, et al. Effect of microstructure on corrosion resistance of a high-strength ultralightweight Mg-Li alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 255
谢 云, 刘 婷, 王 雯 等. 微观组织对一种超轻高强镁锂合金耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 255
[73] Fang A C, Xie G S. Application of micro-arc oxidation technology in aluminum, magnesium and its alloys against corrosion in the marine environment [J]. Surf. Technol., 2012, 41(1): 54
房爱存, 解光胜. 微弧氧化技术在铝、镁及其合金海洋环境防腐蚀中的应用 [J]. 表面技术, 2012, 41(1): 54
[74] Tian G Y, Yan C M, Yang Z H, et al. Research progress on corrosion and protection of corrosion-resistant Mg-Li alloys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1255
田光元, 严程铭, 杨智皓 等. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1255
doi: 10.11902/1005.4537.2022.300
[75] Wang D, Sun S B, Sun Z H, et al. Corrosion resistance of MAO/GO/SA compound coatings on Mg alloy under different processes [J]. Spec. Cast. Nonferrous Alloys, 2023, 43: 1501
王 东, 孙世博, 孙志浩 等. 不同工艺下镁合金MAO/GO/SA复合涂层的耐蚀性 [J]. 特种铸造及有色合金, 2023, 43: 1501
[76] Liu C, Jiang Q T, Sun Q, et al. The hydrothermal performance and corrosion resistance of MgO@Nb2O5 composite coatings on Mg-7Y alloy in natural seawater [J]. J. Mater. Res. Technol., 2023, 26: 9203
[77] He M G, Yang L Q, He Q Y, et al. Comparative study on the corrosion resistance of Al, AlTiSi and AlTiSiN coated Mg-Gd-Y magnesium alloy [J]. Mater. Lett., 2024, 359: 135945
[78] Ren D T, Wang W Q, Zhang X G, et al. Study on microstructures and corrosion resistance of SPS Al-Al2O3, composite coatings on magnesium alloy substrate [J]. Mater. Rep., 2024: 38(16): 22120140
任东亭, 王文权, 张新戈 等. 镁合金基体等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024: 38(16): 22120140
[79] Wang H, Liu Y Y. Research progress in the preparation of anti-corrosion superhydrophobic coatings on magnesium alloys [J]. Surf. Technol., 2023, 52(11): 1
王 华, 刘艳艳. 镁合金表面防腐蚀超疏水涂层制备研究进展 [J]. 表面技术, 2023, 52(11): 1
[80] Huang Z F, Yong Q W, Fang R, et al. Superhydrophobic and corrosion-resistant nickel-based composite coating on magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 755
黄志凤, 雍奇文, 房 蕊 等. AZ31镁合金表面超疏水耐腐蚀镍基复合涂层 [J]. 中国腐蚀与防护学报, 2023, 43: 755
doi: 10.11902/1005.4537.2023.143
[81] Liu J Y, Zhang Z Y, Wang D, et al. Corrosion resistance behavior of different MOF superhydrophobic coatings on magnesium alloy surface [J]. J. Mater. Eng., 2024, 52(4): 138
doi: 10.11868/j.issn.1001-4381.2022.000602
刘金玉, 张志远, 王 东 等. 镁合金表面不同MOF超疏水涂层的耐蚀行为 [J]. 材料工程, 2024, 52(4): 138
doi: 10.11868/j.issn.1001-4381.2022.000602
[82] Liu B S, Gao A, Zhang Z C, et al. Anticorrosion and discharge performance of calcium and neodymium co-doped AZ61 alloy anodes for Mg-air batteries [J]. J. Mater. Sci. Technol., 2024, 193: 132
doi: 10.1016/j.jmst.2024.01.024
[83] Huang D Y, Bu T, Song G L, et al. High anodic-efficiency and energy-density magnesium-air battery with modified AZ31 anode [J]. J. Alloy. Compd., 2023, 960: 170592
[84] Wang N G, Wang R C, Feng Y, et al. Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery [J]. Corros. Sci., 2016, 112: 13
[85] Abedini A, Valmoozi A A E, Afghahi S S S, et al. Corrosion and discharge performance of AZ61, AZ63, AZ101 and AZ103 alloys as anode in magnesium-dissolved oxygen seawater long term batteries[J]. Journal of Power Sources, 2023, 570: 233004
[86] Wang N G, Wang R C, Peng C Q, et al. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery [J]. Electrochim. Acta, 2014, 149: 193
[87] Li J R, Zhang B B, Wei Q Y, et al. Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5wt.%NaCl solution [J]. Electrochim. Acta, 2017, 238: 156
[88] Song D D, Wan H X, Xu D, et al. Influence of rolling on corrosion behavior of ZM5 Mg-Alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 213
宋东东, 万红霞, 徐 栋 等. 轧制对ZM5镁合金腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 213
[89] Xu H, Zhang X, Jiang S S, et al. Influence of aging treatment on corrosion behavior and mechanism of Mg-Y alloys [J]. J. Cent. South Univ., 2018, 25: 987
[90] Feng Y, Wang R C, Peng C Q. Influence of aging treatments on microstructure and electrochemical properties in Mg-8.8Hg-8Ga (wt%) alloy [J]. Intermetallics, 2013, 33: 120
[91] Wang N G, Li W P, Huang Y X, et al. Wrought Mg-Al-Pb-RE alloy strips as the anodes for Mg-air batteries [J]. J. Power Sources, 2019, 436: 226855
[92] Xiao B, Song G L, Zheng D J, et al. A corrosion resistant die-cast Mg-9Al-1Zn anode with superior discharge performance for Mg-air battery [J]. Mater. Des., 2020, 194: 108931
[93] Liu H, Liu W, Wei J, et al. Effect of stray current on corrosion behavior of Mg alloy sacrificial anode in buried pipeline [J]. Eng. Failure Anal., 2023, 143: 106852
[94] Yamauchi K, Asakura S. Galvanic dissolution behavior of magnesium-1 mass%manganese-0.5 mass%calcium alloy anode for cathodic protection in fresh water [J]. Mater. Trans., 2003, 44: 1046
[95] Kim J G, Joo J H, Koo S J. Development of high-driving potential and high-efficiency Mg-based sacrificial anodes for cathodic protection [J]. J. Mater. Sci. Lett., 2000, 19: 477
[96] Hou J C, Guan S K, Ren C X, et al. effect of small addition of strontium on microstructure and electrochemical performance of mg-mn sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 166
侯军才, 关绍康, 任晨星 等. 微量锶对镁锰牺牲阳极显微组织和电化学性能的影响 [J]. 中国腐蚀与防护学报, 2006, 26: 166
[97] Sadawy M, Saad S, Abdel-Karim R. Effect of Zn/Mg ratio on cathodic protection of carbon steel using Al-Zn-Mg sacrificial anodes [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2067
[98] Wen J B, He J G, Lu X W. Influence of silicon on the corrosion behaviour of Al-Zn-In-Mg-Ti sacrificial anode [J]. Corros. Sci., 2011, 53: 3861
[1] WANG Yuhan, LI Jun, LIU Hengwei, XU Nan, LIU Jie, CHEN Xu. Research Progress of Microbial Corrosion of Metallic Materials in Marine Environment[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[2] ZHANG Chao, CHEN Junhang, ZOU Shiwen, ZHANG Huan, LI Zhaoliang, XIAO Kui. Corrosion Behavior of Mg-Gd-Y-Zr Alloy in Simulated Coastal Storage Environment[J]. 中国腐蚀与防护学报, 2025, 45(3): 731-738.
[3] LIANG Yuwei, WANG Jie, SONG Peng, HUANG Taihong, BAO Yuxu. Wear and Corrosion Resistance of FeCrMoSiB Amorphous Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 191-200.
[4] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[5] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[6] ZHANG Juhuan, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Electrochemical Performance of a Novel Al-Zn-In-Sn-La Sacrificial Anode Alloy in Simulated Marine Environments[J]. 中国腐蚀与防护学报, 2024, 44(5): 1223-1233.
[7] LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[8] FENG Shaoyu, ZHOU Zhaohui, YANG Lanlan, QIAO Yanxin, WANG Jinlong, WANG Fuhui. Electrochemical and Wear Behavior of TC4 Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[9] YIN Jie, GAO Yonghao, YI Fang. Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[10] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[11] WU Yang, AN Yiqiang, WANG Liwei, CUI Zhongyu. Atmospheric Corrosion Behavior of Mg-alloys AZ31B and AZ91D in Simulated Low Temperature Environments[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[12] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[13] HUANG Jufeng, SONG Guangling. Research Progress on Corrosion Testing and Analysis of Mg-alloys[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[14] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[15] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
No Suggested Reading articles found!