|
|
Research Progress on Material and Structure Optimization of Environmental Barrier Coatings |
REN Mingze, DONG Lin( ), YANG Guanjun |
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
|
Cite this article:
REN Mingze, DONG Lin, YANG Guanjun. Research Progress on Material and Structure Optimization of Environmental Barrier Coatings. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 33-45.
|
Abstract Environment barrier coatings (EBC) provide effective protection from high-temperature water vapor corrosion for silicon carbide ceramic matrix composites (SiC-CMC), serving as a key material for the next-generation high-temperature components of aircraft engines. This paper reviews the preparation technology and typical structural characteristics for EBC of rare earth silicate/Si bond layer, and discusses the service failure mechanisms in high-temperature engine environments rich in water vapor and deposits CaO-MgO-Al2O3-SiO2 (CMAS). Furthermore, addressing issues such as thermal mismatch of coatings, high-temperature water vapor corrosion, CMAS corrosion, and bond coat oxidation, the design and optimization methods of silicate top coats and Si bond coats are summarized from the perspectives of materials and structures. In response to the demand for even higher operating temperatures, advancements in ultra-high-temperature surface layer structure design and the development of new high-temperature-resistant bond coat materials are introduced. Finally, future research directions for high-performance environment barrier coatings are discussed.
|
Received: 03 September 2024
32134.14.1005.4537.2024.283
|
|
Fund: National Natural Science Foundation of China(52301102);China Postdoctoral Science Foundation(2024M752571) |
Corresponding Authors:
DONG Lin, E-mail: donglin@xjtu.edu.cn
|
1 |
Wu Y, Guo X Y, He D Y, et al. Research progress of CMAS corrosion and protection method for thermal barrier coatings in aero-engines [J]. China Surf. Eng., 2023, 36(5): 1
|
|
吴 杨, 郭星晔, 贺定勇 等. 航空发动机热障涂层的CMAS腐蚀与防护研究进展 [J]. 中国表面工程, 2023, 36(5): 1
|
2 |
Sun Y, Li Z B, Ma L W, et al. Research progress on corrosion failure of high-temperature coatings in aero-engines [J]. Therm. Spray Technol., 2024, 16(2): 1
|
|
孙 毅, 李宗宝, 马菱薇 等. 航空发动机高温涂层腐蚀失效研究进展 [J]. 热喷涂技术, 2024, 16(2): 1
|
3 |
Padture N P. Advanced structural ceramics in aerospace propulsion [J]. Nat. Mater., 2016, 15: 809
|
4 |
Zou L X, Chang H, Gao M H, et al. Research progress and development trend of ground heavy duty gas turbine and its thermal barrier coatings [J]. China Surf. Eng., 2024, 37(1): 18
|
|
邹兰欣, 常 辉, 高明浩 等. 地面重型燃气轮机及其热障涂层的研究进展与发展趋势 [J]. 中国表面工程, 2024, 37(1): 18
|
5 |
Zhu D M. Advanced environmental barrier coatings for SiC/SiC ceramic matrix composite turbine components [A]. OhjiT, SinghM. Engineered Ceramics: Current Status and Future Prospects [M]. Hoboken: John Wiley & Sons, Inc., 2016: 187
|
6 |
Qi H X, Ma R, Meng G H, et al. Research progress on aluminized coatings for high temperature blades [J]. Mater. Prot., 2022, 55(10): 147
|
|
齐浩雄, 马 瑞, 孟国辉 等. 高温叶片用渗铝涂层的研究进展 [J]. 材料保护, 2022, 55(10): 147
|
7 |
Ma Z, Liu L, Zheng W. Environmental barrier coating for aeroengines: materials and properties [J]. Adv. Ceram., 2019, 40: 331
|
|
马 壮, 刘 玲, 郑 伟. 航空发动机环境障涂层: 材料及性能 [J]. 现代技术陶瓷, 2019, 40: 331
|
8 |
Gatzen C, Mack D E, Guillon O, et al. Water vapor corrosion test using supersonic gas velocities [J]. J. Am. Ceram. Soc., 2019, 102: 6850
doi: 10.1111/jace.16595
|
9 |
Lee K N. Special issue: environmental barrier coatings [J]. Coatings, 2020, 10: 512
|
10 |
Shi T J, Zhang X, Peng H R, et al. Research status and prospect of thermal barrier coating materials system [J]. Therm. Spray Technol., 2023, 15(2): 1
|
|
史天杰, 张 鑫, 彭浩然 等. 热障涂层材料体系研究现状及展望 [J]. 热喷涂技术, 2023, 15(2): 1
|
11 |
Zhou B Y, Cui Y J, Wang C L, et al. Research progress in rare earth silicate environmental barrier coatings [J]. J. Mater. Eng., 2023, 51(12): 12
doi: 10.11868/j.issn.1001-4381.2023.000017
|
|
周邦阳, 崔永静, 王长亮 等. 稀土硅酸盐环境障涂层研究进展 [J]. 材料工程, 2023, 51(12): 12
doi: 10.11868/j.issn.1001-4381.2023.000017
|
12 |
Cong K, Gao X Z, Zhang B P. Development of environmental barrier coatings for aero-engines [J]. J. Propul. Technol., 2021, 42: 2161
|
|
丛 凯, 高贤志, 张宝鹏. 航空发动机用环境障涂层的发展 [J]. 推进技术, 2021, 42: 2161
|
13 |
Bai B T, Zhang D M, Ji X J, et al. Research progress on the selection of materials for environmental barrier coating [J]. Therm. Spray Technol., 2022, 14(3): 1
|
|
白博添, 章德铭, 冀晓鹃 等. 环境障涂层选材研究进展 [J]. 热喷涂技术, 2022, 14(3): 1
|
14 |
Wang J N, Wang C H, Wang Y, et al. Review of rare earth silicate environmental barrier coatings [J]. China Surf. Eng., 2021, 34(6): 21
|
|
王佳宁, 王超会, 王 铀 等. 稀土硅酸盐环境障涂层综述 [J]. 中国表面工程, 2021, 34(6): 21
doi: 10.11933/j.issn.1007-9289.20210603001
|
15 |
Olson D H, Deijkers J A, Quiambao-Tomko K, et al. Evolution of microstructure and thermal conductivity of multifunctional environmental barrier coating systems [J]. Mater. Today Phys., 2021, 17: 100304
|
16 |
Lee K N, Miller R A. Development and environmental durability of mullite and Mullite/YSZ Dual layer coatings for SiC and Si3N4 ceramics [J]. Surf. Coat. Technol., 1996, 86-87: 142
|
17 |
Zhou B Y, Cui Y J, Wang C L, et al. Effect of plasma spraying parameters on microstructure and property of the BSAS based abradable environmental barrier coatings [J]. Therm. Spray Technol., 2023, 15(2): 42
|
|
周邦阳, 崔永静, 王长亮 等. 等离子喷涂工艺参数对BSAS基可磨耗环境障涂层组织性能影响 [J]. 热喷涂技术, 2023, 15(2): 42
|
18 |
Chen L, Yang G J, Li C X, et al. Thermally sprayed ceramic coatings for wear-resistant application and coating structure tailoring towards advanced wear-resistant coatings [J]. Adv. Ceram., 2016, 37(1): 3
|
|
陈 林, 杨冠军, 李成新 等. 热喷涂陶瓷涂层的耐磨应用及涂层结构调控方法 [J]. 现代技术陶瓷, 2016, 37(1): 3
|
19 |
Zhuang M X, Du Y Y, Yuan J H, et al. Research progress of high temperature failure of plasma sprayed environmental barrier coatings [J]. China Surf. Eng., 2020, 33(3): 33
|
|
庄铭翔, 都业源, 袁建辉 等. 等离子体喷涂环境障涂层高温失效研究进展 [J]. 中国表面工程, 2020, 33(3): 33
|
20 |
Richards B T, Wadley H N G. Plasma spray deposition of tri-layer environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2014, 34: 3069
|
21 |
Richards B T, Young K A, de Francqueville F, et al. Response of ytterbium disilicate-silicon environmental barrier coatings to thermal cycling in water vapor [J]. Acta Mater., 2016, 106: 1
|
22 |
Liu Y W, Nong Z S. Research status of ceramic coatings prepared by sol-gel method [J]. Mater. Prot., 2023, 56(5): 173
|
|
刘雨薇, 农智升. 溶胶—凝胶法制备陶瓷涂层的研究现状 [J]. 材料保护, 2023, 56(5): 173
doi: 10.16577/j.issn.1001-1560.2023.0121
|
23 |
Yan Z, Peng H R, Ji X J, et al. Preparation of Yb2Si2O7 precursor and its agglomerated powder for low pressure plasma spraying [J]. Therm. Spray Technol., 2022, 14(3): 38
|
|
颜 正, 彭浩然, 冀晓鹃 等. Yb2Si2O7前驱体及其低压等离子喷涂用粉末制备研究 [J]. 热喷涂技术, 2022, 14(3): 38
|
24 |
Yilmaz E, Paksoy A H, Gibson G, et al. Constrained sintering and thermal ageing behaviour of electrophoretically deposited Yb2Si2O7 environmental barrier coating [J]. J. Eur. Ceram. Soc., 2023, 43: 6427
|
25 |
Chen H F, Klemm H. Environmental barrier coatings for silicon nitride [J]. Key Eng. Mater., 2011, 484: 139
|
26 |
Zhang H B, Duan W H, Zhang T, et al. Research overview of thermal barrier coating materials [J]. Mater. Prot., 2022, 55(7): 177
|
|
张洪博, 段文皓, 张 涛 等. 热障涂层材料研究概述 [J]. 材料保护, 2022, 55(7): 177
|
27 |
Xu B S, Liu S C. China Material Engineering Ceremony: Material Surface Engineering (Part I) [M]. Beijing: Chemical Industry Press, 2006: 58
|
|
徐滨士, 刘世参. 中国材料工程大典: 材料表面工程(上) [M]. 北京: 化学工业出版社, 2006: 58
|
28 |
Zhang Y, Guo L L, Ju L Y, et al. Analysis of flow field and particle characteristics of atmospheric plasma spraying [J]. Powder Metall. Ind., 2024, 34(2): 49
|
|
张 勇, 郭龙龙, 鞠录岩 等. 大气等离子喷涂流场与粒子特性分析 [J]. 粉末冶金工业, 2024, 34(2): 49
|
29 |
Wang H Y, Zhang J, Sun L C, et al. Microstructure and phase composition evolution of dual-phase ytterbium silicate coatings plasma sprayed from stoichiometric Yb2Si2O7 feedstock powder [J]. Surf. Coat. Technol., 2022, 437: 128373
|
30 |
Li G R, Wang L S, Yang G J. Achieving self-enhanced thermal barrier performance through a novel hybrid-layered coating design [J]. Mater. Des., 2019, 167: 107647
|
31 |
Yang B, Li G R, Xu T, et al. Densification method of air-plasma-sprayed environmental barrier coatings achieved by pre-heat treatment [J]. J. Mater. Eng., 2021, 49(11): 116
doi: 10.11868/j.issn.1001-4381.2020.001156
|
|
杨 博, 李广荣, 徐 彤 等. 大气等离子喷涂环境障涂层的预热处理致密化方法 [J]. 材料工程, 2021, 49(11): 116
|
32 |
Guo Q, He W T, He J, et al. Characterization of Yb2SiO5-based environmental barrier coating prepared by plasma spray-physical vapor deposition [J]. Ceram. Int., 2022, 48: 19990
|
33 |
Zhang X, Liu M, Zhang X F, et al. Research progress of high temperature protective coatings by plasma spray-physical vapor deposition [J]. China Surf. Eng., 2018, 31(5): 39
|
|
张 啸, 刘 敏, 张小锋 等. 等离子喷涂-物理气相沉积高温防护涂层研究进展 [J]. 中国表面工程, 2018, 31(5): 39
|
34 |
Deng C M, Xiao J, Cao J X, et al. Research progress of PS-PVD rare earth high temperature functional coatings [J]. Mater. Res. Appl., 2019, 13(3): 247
|
|
邓春明, 肖 娟, 曹家旭 等. 等离子喷涂-物理气相沉积稀土高温功能涂层研究进展 [J]. 材料研究与应用, 2019, 13(3): 247
|
35 |
Presby M J, Harder B J. Solid particle erosion of a plasma spray-physical vapor deposition environmental barrier coating in a combustion environment [J]. Ceram. Int., 2021 47: 24403
|
36 |
Xiao S K, Li J Z, Huang P X, et al. Evaluation of environmental barrier coatings: a review [J]. Int. J. Appl. Ceram. Technol., 2023, 20: 2055
|
37 |
Carpenter M A, Salje E K H, Graeme-Barber A. Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals [J]. Eur. J. Mineral., 1998, 10: 621
|
38 |
Bakan E, Vaßen R. Oxidation kinetics of atmospheric plasma sprayed environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2022, 42: 5122
|
39 |
Hu X P, Jiang W H, Li B. High Temperature water oxygen corrosion mechanism of ytterbium disilicate environmental barrier coatings [J]. Mater. Prot., 2024, 57(3): 63
|
|
胡祥鹏, 蒋文昊, 李 彪. 双硅酸镱环境障涂层的高温水氧腐蚀机理研究 [J]. 材料保护, 2024, 57(3): 63
|
40 |
Richards B T, Begley M R, Wadley H N G. Mechanisms of ytterbium monosilicate/mullite/silicon coating failure during thermal cycling in water vapor [J]. J. Am. Ceram. Soc., 2015, 98: 4066
|
41 |
Bakan E, Sohn Y J, Kunz W, et al. Effect of Processing on high-velocity water vapor recession behavior of Yb-silicate environmental barrier coatings [J]. J. Eur. Ceram. Soc., 2019, 39: 1507
|
42 |
Bakan E, Kindelmann M, Kunz W, et al. High-velocity water vapor corrosion of Yb-silicate: sprayed vs. sintered body [J]. Scr. Mater., 2020, 178: 468
|
43 |
Wang C. Deposition characteristics and corrosion mechanism under water vapor of Yb2SiO5 environmental barrier coatings [D]. Guangzhou: South China University of Technology, 2020
|
|
王 超. Yb2SiO5环境障涂层沉积特性及水蒸气腐蚀机制 [D]. 广州: 华南理工大学, 2020
|
44 |
Guo X T, Zhang Y L, Li T, et al. High-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7: a potential environmental barrier coating material [J]. J. Eur. Ceram. Soc., 2022, 42: 3570
|
45 |
Poerschke D L, Jackson R W, Levi C G. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions [J]. Annu. Rev. Mater. Res., 2017, 47: 297
|
46 |
Turcer L R, Krause A R, Garces H F, et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part II, β-Yb2Si2O7 and β-Sc2Si2O7 [J]. J. Eur. Ceram. Soc., 2018. 38: 3914
|
47 |
Costa G C C, Jacobson N S. Mass spectrometric measurements of the silica activity in the Yb2O3-SiO2 system and implications to assess the degradation of silicate-based coatings in combustion environments [J]. J. Eur. Ceram. Soc., 2015, 35: 4259
|
48 |
Duffy J A. Acid-base reactions of transition metal oxides in the solid state [J]. J. Am. Ceram. Soc., 1997, 80: 1416
|
49 |
Turcer L R, Krause A R, Garces H F. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: part I, YAlO3 and γ-Y2Si2O7 [J]. J. Eur. Ceram. Soc., 2018, 38: 3905
|
50 |
Du Z, Chen L, Meng G H, et al. Research progresses on modification technology and application of enamel coating [J]. Mater. Prot., 2023, 56(4): 158
|
|
杜 撰, 陈 林, 孟国辉 等. 搪瓷涂层改性技术及应用研究进展 [J]. 材料保护, 2023, 56(4): 158
|
51 |
Paksoy A H, Martins J P, Cao H T, et al. Influence of alumina addition on steam corrosion behaviour of ytterbium disilicates for environmental barrier coating applications [J]. Corros. Sci., 2022, 207: 110555
|
52 |
Yang B. Densification of APS-Yb2Si2O7 environmental barrier coa-tings and property of water vapor corrosion resistance [D]. Xi'an: Xi'an Jiaotong University, 2021
|
|
杨 博. 等离子喷涂Yb2Si2O7环境障涂层的致密化研究方法与抗水氧腐蚀性能研究 [D]. 西安: 西安交通大学, 2021
|
53 |
Wen Z L, Xiao P, Li Z, et al. Thermal cycling behavior and oxidation resistance of SiC whisker-toughened-mullite/SiC coated carbon/carbon composites in burner rig tests [J]. Corros. Sci., 2016, 106: 179
|
54 |
Dong L, Liu M J, Zhang X F, et al. Improved water vapor resistance of environmental barrier coatings densified by aluminum infiltration [J]. Ceram. Int., 2022, 48: 23638
|
55 |
Lü K Y, Dong S J, Huang Y, et al. Thermal shock behavior of La-MgAl11O19/Yb2Si2O7/Si thermal/environmental barrier coatings with LaMgAl11O19-LiAlSiO4 transition layer [J]. Surf. Coat. Technol., 2022, 443: 128
|
56 |
Singhal S C, Lange F F. Effect of alumina content on the oxidation of hot-pressed silicon carbide [J]. J. Am. Ceram. Soc., 1975, 58: 433
|
57 |
Chen L, Wang W J, Li J H, et al. Suppressing the phase-transition-induced cracking of SiO2 TGOs by lattice solid solution [J]. J. Eur. Ceram. Soc., 2023, 43: 3201
|
58 |
Harder B J. Oxidation performance of Si-HfO2 environmental barrier coating bond coats deposited via plasma spray-physical vapor deposition [J]. Surf. Coat. Technol., 2020, 384: 125311
|
59 |
Chen L, Luo J C, Yang W Q, et al. Durable dual-state duplex Si-HfO2 with excellent oxidation and cracking resistance [J] J. Adv. Ceram., 2024, 13: 388
|
60 |
Miyazaki T, Usami S, Arai Y, et al. Oxidation behavior of ytterbium silicide in air and steam [J]. Intermetallics, 2021, 128: 106
|
61 |
Golden R A, Opila E J. High-temperature oxidation of yttrium silicides [J]. J. Mater. Sci., 2018, 53: 3981
|
62 |
Wang W J, Luo J C, Chen L, et al. One-step multi-compositional oxidation of YSi alloy: experiments and Ab initio computation [J]. J. Mater. Sci. Technol., 2023, 158: 253
doi: 10.1016/j.jmst.2023.02.042
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|