Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 237-243    DOI: 10.11902/1005.4537.2024.249
Current Issue | Archive | Adv Search |
Corrosion Behavior of 304 Stainless Steel in Simulated Ethanol Fire Atmosphere
XIE Dongbai1, LAI Tian1,2, TANG Zhijie2, DUO Shuwang2(), DENG Shi3
1 University Featured Laboratory of Materials Engineering for Agricultural Machinery of Shandong Province, Weifang University of Science and Technology, Shouguang 262700, China
2 Jiangxi Key Laboratory of Materials Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
3 Department of Forensic Science, Xinjiang Police College, Urumqi 830011, China
Cite this article: 

XIE Dongbai, LAI Tian, TANG Zhijie, DUO Shuwang, DENG Shi. Corrosion Behavior of 304 Stainless Steel in Simulated Ethanol Fire Atmosphere. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 237-243.

Download:  HTML  PDF(10257KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Combustion accelerant is a kind of highly flammable, volatile, and easily polluted substance, which is difficulty to extract and identify in the fire scenes. In order to solve the issue of identifying the accelerant, a liquid combustion atmosphere simulation system was developed in the Lab to simulate the fire environment involving ethanol accelerant. Herein, the oxidation behavior of 304 stainless steel was studied via the Lab simulation system in the combustion atmosphere of air-ethanol at 600-800 oC in terms of the corrosion kinetics, the composition and morphylogy of corrosion products, and the steel microstructure variations. The resuts show that the oxidation behavior of 304 stainless steel in the ethanol combustion atmosphere differ significantly from that in air, making it impossible to form a continuous protective oxide scale on its surface and thus catastrophic oxidation occurs. The surface oxide scale is composed of island-like oxide clusters of Fe2O3 and Fe3O4. Furthermore, oxidizing atmosphere induced by ethanol flux combustion along with turbulence will accelerate the chromium consumption from the steel, as well as enhanced the separation of oxide scale. Besides the oxidation rate also increases with the increasing test temperature. It follows that the above findings may be helpful to identify if there existed or not accelerant components in the fire scenes.

Key words:  fire investigations      ethanol      accelerants      simulates combustion      oxidation     
Received:  11 August 2024      32134.14.1005.4537.2024.249
ZTFLH:  TG174  
Fund: Project at Weifang University of Science and Technology(KJRC2021007)
Corresponding Authors:  DUO Shuwang, E-mail: dbxie@aliyun.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.249     OR     https://www.jcscp.org/EN/Y2025/V45/I1/237

Fig.1  Mass change per unit surface area versus time plot of 304 stainless steel oxidized in ethanol combustion atmosphere at 600 oC (a), 700 oC (b) and 800 oC (c)
Fig.2  SEM surface morphologies of 304 stainless steel after oxidation in combustion of ethanol at 600 oC/20 min (a, b), 600 oC/30 min (c), 700 oC/20 min (d, e), 800 oC/20 min (f)
Fig.3  XRD patterns of 304 stainless steel oxidized in combustion of ethanol at 600-800 oC for 20-30 min (a) and ethanol or air at 700-800 oC for 75 min (b)
RegionMass fraction / %Atomic fraction / %
FeCrNiSiMnFeCrNiSiMn
165.7916.327.210.651.0258.699.651.050.140.61
251.4413.705.361.000.8132.915.810.560.160.35
Table 1  EDS results of the regions 1 and 2 marked in Fig.2
Fig.4  SEM surface morphologies of 304 stainless steel after oxidation in combustion of ethanol at 700 oC (a, b) and 800 oC (d, e), and in air at 700 oC (c), 800 oC (f) for 75 min
Fig.5  Cross section (a1-c1) and element profiles (a2-c2) of 304 stainless steel oxidized in combustion of ethanol at 600 oC (a), 700 oC (b) and 800 oC (c)
1 Xie D B, Wang W, Duo S W. Influence of liquid accelerant on scaling behavior of stainless steel in fire: an experimental study [J]. Fire Mater., 2019, 43: 831
2 Xie D B, Hong H, Duo S W, et al. Effect of kerosene combustion atmosphere on the mild steel oxide layer [J]. Sci. Rep., 2022, 12: 379
doi: 10.1038/s41598-021-04377-3 pmid: 35013478
3 Xie D B, Wang W, Lv S L, et al. Effect of simulated combustion atmospheres on oxidation and microstructure evolution of aluminum alloy 5052 [J]. Fire Mater., 2018, 42: 278
4 Lai T, Xie D B, Duo S W, et al. Initial oxidation behavior of pure iron in a simulated combustion environment containing gasoline [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 445
赖 天, 谢冬柏, 多树旺 等. 纯铁在模拟汽油燃烧环境中的初期氧化行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 445
5 Liu Z J, Yu L L, Zhang M. Effect of fire temperature on microstructure and properties of copper welded joint [J]. Hot Work. Technol., 2010, 39(3): 17
刘政军, 于丽丽, 张 明. 火灾温度对紫铜焊接接头组织性能的影响 [J]. 热加工工艺, 2010, 39(3): 17
6 Yang Y F, Sun W Y, Chen M H, et al. Oxidation behavior of a single crystal ni-based superalloy N5 and its nanocrystalline coating at 900 oC in O2 and O2 + 20%H2O environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 55
杨依凡, 孙文瑶, 陈明辉 等. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2 + 20%H2O气氛中的氧化行为 [J]. 中国腐蚀与防护学报, 2023, 43: 55
doi: 10.11902/1005.4537.2022.040
7 Liang Z Y, Zhang C, Qu J Y, et al. Oxidation behavior in air-steam mixed atmosphere at 1000 oC of four typical high-temperature alloys for gas turbine [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 355
梁志远, 张 超, 曲劲宇 等. 某燃气轮机燃烧室合金高温蒸汽氧化行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 355
doi: 10.11902/1005.4537.2023.105
8 Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline steel in supercritical CO2 fluids [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 576
胡丽华, 衣华磊, 杨维健 等. 水含量对超临界CO2输送管道腐蚀的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 576
doi: 10.11902/1005.4537.2023.227
9 Hong H, Xie D B, Duo S W, et al. Device for simulating and stabilizing combustion environment of combustion improver [J]. Chin Pat, CN201910634235.9, 2019
洪 昊, 谢冬柏, 多树旺 等. 模拟稳定助燃剂燃烧环境装置 [P]. 中国专利, CN201910634235.9, 2019)
10 Hong H, Xie D B, Duo S W, et al. Second device for simulating stable combustion improver combustion environment [P]. Chin Pat, 201910634259.4, 2019
洪 昊, 谢冬柏, 多树旺 等. 模拟稳定助燃剂燃烧环境装置之二 [P]. 中国专利, 201910634259.4, 2019)
11 Xie D B, Deng S, Shan G, et al. Detection method for liquid combustible material in fire scene environment [P]. Chin Pat, 201510909997.7, 2015
谢冬柏, 邓 时, 单 国 等. 一种火场环境中液体可燃物的检测方法 [P]. 中国专利, 201510909997.7, 2015)
12 Stott F H. Influence of alloy additions on oxidation [J]. Mater. Sci. Technol., 1989, 5: 734
13 Caplan D. Effect of cold work on the oxidation of Fe-Cr alloys in water vapour at 600 oC [J]. Corros. Sci., 1966, 6: 509
14 Higginson R L, Green G. Whisker growth morphology of high temperature oxides grown on 304 stainless steel [J]. Corros. Sci., 2011, 53: 1690
15 Jepson M A E. Oxidation of austenitic and duplex stainless steels during primary processing [D]. Loughborough: Loughborough University, 2008
16 Gao Z C, Wang Z Y. The mechanism of alcohol combustion reaction [J]. J. Liaoning Univ. (Nat. Sci. Ed.), 2003, 30: 63
高志崇, 王子瑛. 醇燃烧反应机理探讨 [J]. 辽宁大学学报(自然科学版), 2003, 30: 63
17 Shang Z Y. Research on high temperature Oxidation behavior of several stainless steels [D]. Taiyuan: Taiyuan University of Technology, 2012
尚竹亚. 几种不锈钢材料高温氧化行为的研究 [D]. 太原: 太原理工大学, 2012
18 Asteman H, Svensson J E, Johansson L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873K in the presence of 10% water vapor [J]. Oxid. Met., 1999, 52: 95
19 Asteman H, Segerdahl K, Svensson J E, et al. The influence of water vapor on the corrosion of chromia-forming steels [J]. Mater. Sci. Forum, 2001, 369-372: 277
20 Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation [J]. Oxid. Met., 2000, 54: 11
[1] FAN Chunhua, WU Qianlin, XUE Shan, GE Jialu. Effect of Cr- and Si-addition on Oxidation Behavior of N80 Carbon Steel for Gas Injection Wells in Fire-flooding Oil Field[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[2] REN Mingze, DONG Lin, YANG Guanjun. Research Progress on Material and Structure Optimization of Environmental Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 33-45.
[3] GUO Jingbo, YANG Shouhua, ZHOU Ziyi, MU Rende, XIE Yun, SHU Xiaoyong, DAI Jianwei, PENG Xiao. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[4] XU Xiwen, SHU Xiaoyong, CHEN Zhiqun, HE Hairui, DONG Shuhe, FANG Yuqing, PENG Xiao. Oxidation Behavior of CVD Aluminized Coatings on DD6 Single Crystal Ni-based Superalloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[5] CHEN Hui, XU Fubin, FANG Yaxiong, ZHU Zhongliang. Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[6] PEI Haiqing, XIAO Jingbo, LI Wei, YU Haoyu, WEN Zhixun, YUE Zhufeng. First Principles Study on Effect of Al-O Element Aggregation on Oxidation of a Ni-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[7] ZHANG Caiyun, LI Shuai, BAO Zebin, ZHU Shenglong, WANG Fuhui. Stripping and Refurbishment of (Ni, Pt)Al Coating After Service for Different Oxidation Durations[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[8] ZHANG Weidong, CUI Yu, LIU Li, WANG Fuhui. Corrosion Behavior of Pre-oxidized GH4169 Alloy Beneath Solid NaCl Deposit Film in Wet Oxygen Flow at 600 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 182-190.
[9] YAN Haojie, YIN Ruozhan, WANG Wenjun, SUN Qingqing, WU Liankui, CAO Fahe. Cyclic Oxidation Behavior of TiAl Alloy with Electrodeposited SiO2 Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 81-91.
[10] DONG Ziye, WU Yiheng, LU Chong, SHEN Zhao, ZENG Xiaoqin. Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs)[J]. 中国腐蚀与防护学报, 2025, 45(1): 46-60.
[11] ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[12] WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[13] LI Kaiyang, ZHAI Yunlong, HU Xinyu, WU Hong, LIU Bin, XING Shaohua, HOU Jian, ZHANG Fan, ZHANG Naiqiang. Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[14] LI Jiaheng, QIAN Wei, ZHU Jingjing, CAI Jie, HUA Yinqun. Influence of Laser Shock Peening on Microstructure and Oxidation Performance of Nickel-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[15] WU Ming, REN Yanjie, MA Zhuochun, ZHANG Sitian, CHEN Jian, NIU Yan. High Temperature Oxidation Behavior of F55 Super Duplex Stainless Steel at 800-1000oC in 1.013×105 Pa O2[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
No Suggested Reading articles found!