Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1656-1662    DOI: 10.11902/1005.4537.2024.009
Current Issue | Archive | Adv Search |
Corrosion Behavior of SA210C Steel Beneath Deposit Film of Mixed Salts Na2SO4-NaCl in Air at 600oC
ZHAN Fuyuan1, LIU Xuanyi2, HAUNG Shifu2, LIU Shuaiqi3, XU Yuanyuan2, PAN Xigui1, HE Hualin4, LIU Guangming3()
1. Guoneng Fengcheng Power Generation Co., Ltd., Fengcheng 331100, China
2. Wuhan Branch of National Energy Group Science and Technology Research Institute Co., Ltd., Wuhan 430070, China
3. School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
4. Chengdu Great Norga Science and Technology Co., Ltd., Chengdu 611330, China
Cite this article: 

ZHAN Fuyuan, LIU Xuanyi, HAUNG Shifu, LIU Shuaiqi, XU Yuanyuan, PAN Xigui, HE Hualin, LIU Guangming. Corrosion Behavior of SA210C Steel Beneath Deposit Film of Mixed Salts Na2SO4-NaCl in Air at 600oC. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1656-1662.

Download:  HTML  PDF(11115KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of SA210C steel beneath surface deposit film of mixed salts of Na2SO4∶NaCl = 3∶1, 1∶1 and 1∶3 in air at 600oC was studied by means of corrosion kinetics curve measurement, as well as characterization of composition, microstructure and morphology of the corrosion products by XRD, SEM and EDS. The results show that the corrosion products on the surface of SA210C steel consists mainly of Fe3O4 and Fe2O3, and the mass gain and the thickness of corrosion products scale are positively correlated with the mass proportion of NaCl in the mixed salt film. When the mass ratio of NaCl to Na2SO4 in the mixed salt film is 1∶3, the corrosion products on the surface of SA210C steel have obvious cracking and delamination, and the corrosion products are seriously spalling. When the mass ratio of NaCl to Na2SO4 is 3∶1, penetrating cracks are observed in the corrosion products scale and internal corrosion occurs in the base metal.

Key words:  SA210C steel      NaCl      Na2SO4      high temperature corrosion      thermal power generation     
Received:  04 January 2024      32134.14.1005.4537.2024.009
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51961028)
Corresponding Authors:  LIU Guangming, E-mail:gemliu@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.009     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1656

Fig.1  Low (a) and high (b) magnification images of band metallographic structure of SA210C steel
Fig.2  Corrosion kinetics (a) and fitting curves (b) of SA210C steel coated with mixed salt films of different mass ratios
Mixed salt filmFitting equationR2
Na2SO4∶NaCl = 3∶1Δm2 = 0.12073t + 0.069570.99799
Na2SO4∶NaCl = 1∶1Δm2 = 0.40358t-0.378250.99771
Na2SO4∶NaCl = 1∶3Δm2 = 0.85023t-0.564060.99223
Table 1  Fitting parameters of the oxidation mass gains of SA210C steel
Fig.3  XRD patterns of SA210C steel coated with mixed salt films of different mass ratios after corrosion for 10 h at 600oC
Fig.4  Optical macroscopic morphologies of SA210C steel coated with mixed salt films of Na2SO4∶NaCl = 3∶1 (a), 1∶1 (b) and 1∶3 (c) after corrosion for 10 h at 600oC
Fig.5  Microscopic morphologies (a-c) and representative EDS surface analysis (d) of SA210C steel coated with mixed salt films of Na2SO4∶NaCl = 3∶1 (a), 1∶1 (b) and 1∶3 (c) after corrosion for 10 h at 600oC
Fig.6  Microscopic morphologies (a-c) of the cross sections of SA210C steel coated with mixedsalt films of Na2SO4∶NaCl = 3∶1 (a), 1∶1 (b), 1∶3 (c) after corrosion for 10 h at 600oC, and EDS analysis result of the box region marked in Fig.6c (d)
MaterialYoung's modulus (E / GPa)Poisson's ratio (μ)Coefficient of linear expansion (α / 10-6·K-1)
Fe2O32200.2410.4
Fe3O42100.3213.1
Fe200-15.3
Table 2  Correlated parameters in the mean thermal stress equation of oxide scale
1 Guan X Y, Yao X H, Li X J, et al. Cause analysis and preventive measures of supercritical boiler spiral water wall thinning [J]. Boiler Technol., 2021, 52(6): 48
(关鑫源, 姚学会, 李鑫杰 等. 超临界锅炉水冷壁壁厚减薄原因分析及预防 [J]. 锅炉技术, 2021, 52(6): 48)
2 Zhu F H, Xu J X, Wang S, et al. Processes and prospects of air pollutant control in coal-fired power plants in China [J]. Electr. Power Technol. Environ. Prot., 2023, 39(5): 371
(朱法华, 徐静馨, 王 圣 等. 中国燃煤电厂大气污染物治理历程及展望 [J]. 电力科技与环保, 2023, 39(5): 371)
3 Shi P F, Kang C B, Wang S C, et al. Study on thermal economy of a 600 MW supercritical air-cooled coal-fired unit for deep peak regulating operation [J]. Electr. Power Technol. Environ. Prot., 2023, 39(2): 147
(史鹏飞, 康朝斌, 王书超 等. 某600 MW超临界空冷燃煤机组深度调峰运行热经济性研究 [J]. 电力科技与环保, 2023, 39(2): 147)
4 Liu T Z, Liu X L, Lai Y T, et al. Failure analysis of welding seam cracking of superheater tube of power station boiler [J]. Electr. Power Technol. Environ. Prot., 2022, 38(4): 294
(刘天佐, 刘献良, 赖云亭 等. 电站锅炉过热器管焊缝开裂失效分析 [J]. 电力科技与环保, 2022, 38(4): 294)
5 Jin M H, Liu X L, Lai Y T, et al. Failure analysis of tube bursting of 12Cr1MoVG high temperature superheater [J]. Electr. Power Technol. Environ. Prot., 2021, 37(5): 42
(金敏华, 刘献良, 赖云亭 等. 12Cr1MoVG高温过热器爆管失效分析 [J]. 电力科技与环保, 2021, 37(5): 42)
6 Daneshvar-Fatah F, Mostafaei A, Hosseinzadeh-Taghani R, et al. Caustic corrosion in a boiler waterside tube: root cause and mechanism [J]. Eng. Failure Anal., 2013, 28: 69
7 Ameri M, Shamshirgaran S R. A case study: the effects of the design factors on the thermal profile of Shahid Rajaiee boiler [J]. Appl. Therm. Eng., 2008, 28: 955
8 Guo W. Research on burst failure and prevention of power plant pulverized boiler water wall tubes [D]. Shanghai: East China University of Science and Technology, 2015
(郭 巍. 电厂煤粉锅炉水冷壁管爆管分析与防护措施研究 [D]. 上海: 华东理工大学, 2015)
9 Xu Q, Wang Y, Mao J. Comparison of SA210A-1, SA210C and 20G seamless steel tube used for high pressureboiler [J]. Boiler Technol., 2016, 47(6): 59
(徐 沁, 王 煜, 毛 洁. 高压锅炉用碳钢SA210A-1、SA210C、20G比较分析 [J]. 锅炉技术, 2016, 47(6): 59)
10 Ning J, Xu S T, Jin H, et al. Chlorine release and migration characteristics during combustion of high chlorine coal [J]. J. Combust. Sci. Technol., 2020, 26: 340
(宁 坚, 徐顺塔, 靳 虎 等. 高氯煤燃烧过程中氯的释放及迁移特性 [J]. 燃烧科学与技术, 2020, 26: 340)
11 Ning J, Jin H, Wang Z A, et al. Research advances on the occurrence and release characteristics of chlorine in Coal [J]. J. China Coal Soc., 2019, 44: 2886
(宁 坚, 靳 虎, 王泽安 等. 煤中氯的赋存与释放特性研究进展 [J]. 煤炭学报, 2019, 44: 2886)
12 Li L Y, Tan H Z, Wang X B, et al. Research progress and applied technical status of high chlorine coal utilization [J]. Proc. CSEE, 2022, 42: 4040
(李良钰, 谭厚章, 王学斌 等. 高氯煤的研究进展和应用技术现状 [J]. 中国电机工程学报, 2022, 42: 4040)
13 Qu Z P, Zhong R G, Wang L, et al. Research progress on high temperature corrosion mechanism of waste incineration power generation boiler [J]. IOP Conf. Ser. Earth Environ. Sci., 2020, 598: 012008
14 Jiang X G, Liu X B. Research progress and direction thinking on corrosion of key heat transfer components in waste incineration boilers [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 205
(蒋旭光, 刘晓博. 垃圾焚烧锅炉关键受热面腐蚀研究进展及方向思考 [J]. 中国腐蚀与防护学报, 2020, 40: 205)
doi: 10.11902/1005.4537.2019.073
15 Promdirek P, Boonpensin M. High-temperature corrosion behavior of carbon steel subjected to simulated combustion atmosphere [J]. Mater. Today: Proc., 2023, 77: 1112
16 Xu M L, Yan J H, Ma Z Y, et al. Mechanism analysis of ash deposits corrosion in waste incinerator [J]. Proc. CSEE, 2007, 27: 32
(许明磊, 严建华, 马增益 等. 垃圾焚烧炉受热面的积灰腐蚀机理分析 [J]. 中国电机工程学报, 2007, 27: 32)
17 Chen T C, Xiang J H, Jiang L F, et al. High-temperature corrosion behavior of Q235 Steel in oxidizing atmosphere containing chlorine [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 560
(陈土春, 向军淮, 江龙发 等. Q235钢在氧化性含Cl气氛中的高温腐蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 560)
doi: 10.11902/1005.4537.2020.129
18 Wu F. Characteristics of chlorine corrosion at high temperature [J]. Power Syst. Eng., 2003, 19(1): 13
(吴峰. 高温氯腐蚀的特点 [J]. 电站系统工程, 2003, 19(1): 13)
19 Cui J, Li W J, Gong S D, et al. Discussion on high temperature corrosion of heating surface in waste incineration boiler and countermeasures [J]. Boiler Technol., 2023, 54(1): 59
(崔 静, 李文杰, 龚思达 等. 垃圾焚烧锅炉受热面高温腐蚀与对策探讨 [J]. 锅炉技术, 2023, 54(1): 59)
20 Yang H J, Li Z G, Li C Z, et al. Analysis on the causes of high-temperature corrosion and the measures for it’s protection [J]. Proc. CSEE, 2003, 23: 211
(杨厚君, 李正刚, 李朝志 等. DG1025锅炉高温再热器高温腐蚀原因分析与防止措施 [J]. 中国电机工程学报, 2003, 23: 211)
21 Li J S, Liu Y, Yuan Z. Influence of three corrosive media on high-temperature corrosion behavior of T92 steel [J]. Corros. Prot., 2018, 39: 437
(李建三, 刘洋, 袁 周. 3种介质对T92钢高温腐蚀行为的影响 [J]. 腐蚀与防护, 2018, 39: 437)
22 Zhang W, Li Z F, Ni J F, et al. Electrochemical corrosion behavior of 12Cr1MoVG steel for superheater pipe of waste incinerator in high temperature chloride-sulfate molten salt system [J]. Corros. Prot., 2020, 41: 18
(张 炜, 黎子锋, 倪进飞 等. 垃圾焚烧炉过热器管用12Cr1MoVG钢在高温氯化物-硫酸盐熔盐体系中的电化学腐蚀行为 [J]. 腐蚀与防护, 2020, 41: 18)
23 Li J G, Liu Y. The effect of compositions of domestic coal on the performance of ESP and an evaluation of ESP adaptability [J]. Sci. Technol. Rev., 2010, 28(7): 104
(郦建国, 刘 云. 中国煤种成分对电除尘器性能影响及电除尘器适应性评价 [J]. 科技导报, 2010, 28(7): 104)
24 Huang P, Ning J, Jin H, et al. Thermal migration and release characteristics of chlorine in high-chlorine coal in different reaction atmospheres [J]. Therm. Power Gener., 2021, 50(7): 55
(黄 璞, 宁 坚, 靳 虎 等. 不同反应气氛下高氯煤中氯的热迁移及释放特性研究 [J]. 热力发电, 2021, 50(7): 55)
25 Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 201
(李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 201)
26 Li M S, Xin L, Qian Y H, et al. A review on studies of internal stress in oxide scales [J]. Corros. Sci. Prot. Technol, 1999, 11: 300
(李美栓, 辛 丽, 钱余海 等. 氧化膜应力研究进展 [J]. 腐蚀科学与防护技术, 1999, 11: 300)
[1] WANG Wenquan, CUI Yu, XUE Yunpeng, LIU Li, WANG Fuhui. Corrosion Behavior of GH4169 Alloy Under Flexural Tensile Stress and Beneath a NaCl Deposit Film in Water Vapor Containing Air at 600oC[J]. 中国腐蚀与防护学报, 2024, 44(6): 1399-1411.
[2] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[3] XU Jiaxin, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Effect of Coating Process Temperatures on Hot Corrosion Behavior Induced by Deposit of Sulfates Salts in Air at 750oC for CVD Aluminized Coatings on K452 Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.
[4] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[5] LI Jiancheng, ZHAO Jing, XIE Xin, WANG Jinlong, CHEN Minghui, WANG Fuhui. Preparation of Phosphate Coatings on Ti-alloy and Their Corrosion Behavior Beneath Salt-mixture in Water Vapor Flow at 650oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[6] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[7] LIU Zhihao, LIU Guangming, HE Sifan, DONG Meng, LI Yu, LI Futian, ZHU Ting. High Temperature Corrosion Behavior of F22 Base Metal and Weld in Simulated Coastal Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[8] SHEN Jubao, CUI Yu, LIU Li, LIU Rui, MENG Fandi, WANG Fuhui. Cyclic Hot Corrosion Behavior of DZ40M and K452 Superalloys Beneath Molten Deposit NaCl[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
[9] LIU Shuyu, GENG Shujiang, MA Yimeng, WANG Jinlong, WANG Fuhui. Corrosion Resistance of K444 Alloy without and with CVD Aluminized Coatings Beneath NaCl Deposit in Air at 750 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 321-328.
[10] GUAN Yu, LIU Guangming, ZHANG Minqiang, LIU Huanhuan, LIU Zhihao, GONG Bingbing. High Temperature Corrosion Behavior of Sanicro 25 Steel in High-sulfur Coal Ash/simulated Flue Gas[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[11] WANG Minghao, WANG Huan, LIU Rui, MENG Fandi, LIU Li, WANG Fuhui. Research on Image Recognition for NiCrAlY Coating/N5 High-temperature Alloy System Based on Deep Learning Method[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[12] YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[13] LI Rui, CUI Yu, LIU Li, FAN Lei, MENG Fandi, WANG Fuhui. Corrosion Behavior of Ti60 Alloy in Fog of NaCl Solution at 600 ℃[J]. 中国腐蚀与防护学报, 2021, 41(5): 595-601.
[14] CHEN Tuchun, XIANG Junhuai, JIANG Longfa, XIONG Jian, BAI Lingyun, XU Xunhu, XU Xincheng. High-temperature Corrosion Behavior of Q235 Steel in Oxidizing Atmosphere Containing Chlorine[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[15] Min CAO, Li LIU, Zhongfen YU, Ying LI, Fuhui WANG. Exfoliation Corrosion Behavior of 2A02 Al-alloy in a Simulated Marine Atmospheric Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
No Suggested Reading articles found!