Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1465-1475    DOI: 10.11902/1005.4537.2024.062
Current Issue | Archive | Adv Search |
Inhibitory Action of Coffee Skin Extract on Corrosion of Steel in Trichloroacetic Acid Solution
MU Xianju1,2, LI Xianghong1,2, LEI Ran1,2, DENG Shuduan1,2()
1. Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
2. College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
Cite this article: 

MU Xianju, LI Xianghong, LEI Ran, DENG Shuduan. Inhibitory Action of Coffee Skin Extract on Corrosion of Steel in Trichloroacetic Acid Solution. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1465-1475.

Download:  HTML  PDF(8372KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion inhibition performance of the agricultural and forestry waste of coffee skin extract (CSE) in 0.10 mol·L-1 trichloroacetic acid (Cl3CCOOH) for plate of a cold rolled steel (CRS) was investigated by mass loss method, electrochemical tests, infrared spectroscopy (FTIR), scanning electron microscope (SEM), contact angle and surface tension measurements. The results show that the inhibition efficiency of 500 mg·L-1 CSE can reach as high as 93.7% at 20oC. The adsorption of CSE on CRS follows Langmuir adsorption isotherm at 20oC and 30oC, while follows Freundlich adsorption isotherm at 40oC and 50oC. The standard Gibbs free energy (ΔG0) is in the range of -30~-41 kJ·mol-1. The adsorption type of CSE on CRS is the mixed adsorption mainly by chemisorption. CSE is a cathodic-type inhibitor. With the presence of CSE in 0.10 mol·L-1 trichloroacetic acid solution the charge transfer r reactance increases, while the interface double layer capacitance reduces for the steel surface. As a subsequence, the corrosion degree and roughness of the steel surface decrease significantly, but its hydrophobicity is enhanced. FTIR confirms that CSE contains a large number of polar groups such as O atoms and aromatic rings. As the CSE concentration increases, the surface tension of the corrosive Cl3CCOOH solution gradually decreased, and the conductivity of the solution increased. After the immersion of the test steel in the solution, the surface tension of the solution is increased, while its conductivity decreased.

Key words:  coffee skin extract      trichloroacetic acid      steel      corrosion inhibition mechanism      adsorption     
Received:  28 February 2024      32134.14.1005.4537.2024.062
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52161016);Key Project of Joint Special Project on Agricultural Basic Research in Yunnan Province(202101BD070001-017);Special Project of Young Top Talents of the Ten Thousand People's Plan of Yunnan Province(51900109);Key Project of Basic Research Program of Yunnan Province(202301AS070043);Project of Open Fund of the Key Laboratory of the State Forestry and Grassland Bureau for Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University(2022-KF08)
Corresponding Authors:  DNEG Shuduan, E-mail: dengshuduan@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.062     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1465

Fig.1  Extraction process of CSE
Fig.2  Corrosion rates (a) and corrosion inhibition efficiencies of CSE (b) of cold rolled steel during 6 h immersion in 0.10 mol·L-1 Cl3CCOOH solution at 20~50oC as a function of CSE concentration
InhibitorT / ℃Acidc (Inhibitor)η / %Ref.
Moringa oliefera extract300.5 mol·L-1 H2SO41500 mg·L-193[12]
Soybean meal extract401.0 mol·L-1 HCl800 mg·L-192[13]
Rheum ribes leaf extract201.0 mol·L-1 HCl1000 mg·L-189[14]
Maple leaves extract200.5 mol·L-1 H2SO4200 mg·L-1 MLE + 200 mg·L-1 KI93[15]
Houttuynia cordata extract200.5 mol·L-1 H2SO41500 mg·L-196[16]
Brainea insignis extract301.0 mol·L-1 HCl560 mg·L-194[17]
Bamboo leaves extract200.1 mol·L-1 Cl3CCOOH200 mg·L-196[18]
Walnut green husk extract301.0 mol·L-1 HCl500 mg·L-1 WGHE + 1000 mg·L-1 Nd(NO3)390[19]
Table 1  Corrosion inhibition efficiencies of various typical plant extracts for steels in acid solutions
Fig.3  Langmuir and Freundlich adsorption isotherms of CSE on cold rolled steel at 20, 30oC (a) and 40, 50oC (b)
Inhibitor

T

oC

r2Slope

K

L·mg-1

ΔG0

kJ·mol-1

CSE200.99930.980.0273-34.7
300.99030.840.0091-33.1
400.96381.080.1276-41.0
500.97461.170.0553-40.1
Table 2  Linear fitting parameters of Langmuir and Freundlich adsorption isotherms and ΔG0
Fig.4  Potentiodynamic polarization curves of cold rolled steel in 0.10 mol·L-1 Cl3CCOOH solutions without and with CSE at 20oC

c

mg·L-1

Ecorr

mV

Icorr

μA·cm-2

bc

mV·dec-1

ba

mV·dec-1

ηp

%

0-3462274-297254-
50-3461115-2637251.0
250-462361-22914284.1
500-455147-25911393.5
Table 3  Fitting parameters of poteniodynamic polarization parameters of cold rolled steel in 0.10 mol·L-1 Cl3CCOOH solutions without and with CSE at 20oC
Fig.5  Nyquist plots (a), Bode moduli (b) and Bode phases (c) of cold rolled steel in 0.10 mol·L-1 Cl3CCOOH solutions without and with CSE at 20oC, and equivalent circuit model (d)

c

mg·L-1

Rs

Ω·cm2

Rt

Ω·cm2

RL

Ω·cm2

χ2

10-3

a

CPE

μΩ-1·s a ·cm-2

Cdl

μF·cm-2

ηR

%

09.94.89.644.50.83371920.0760.4-
5019.212.883.243.90.8963379.0200.871.2
25014.1110.52260.01.30.869894.249.097.0
50011.7215.01479.01.00.839479.335.598.3
Table 4  Fitting parameters of EIS of cold rolled steel in Cl3CCOOH solutions without and with CSE at 20oC
Fig.6  FTIR spectra of CS and CSE, and adsorbed layers on cold rolled steel in Cl3CCOOH solution containing CSE
Fig.7  SEM surface micrographs of different samples (a1~c1, a2~c2) and corresponding contact angle images (a3~c3) of water drops for: (a) polished steel, (b) steel immersed in Cl3CCOOH solution, (c) steel immersed in Cl3CCOOH solution with 500 mg·L-1 CSE
Fig. 8  Surface tensions (a) and electrical conductivities (b) as a function of CSE concentration at 20oC
Fig.9  Diagram of corrosion inhibition mechanism (a) and structural formulas of the main components (b) of CSE
1 Bastidas D M. Corrosion and protection of metals [J]. Metals, 2020, 10: 458
2 Saleh T A, Haruna K, Alharbi B. Diaminoalkanes functionalized graphene oxide as corrosion inhibitors against carbon steel corrosion in simulated oil/gas well acidizing environment [J]. J. Colloid Interface Sci., 2023, 630: 591
3 Li X H, Deng S D. Synergistic inhibition effect of walnut green husk extract and potassium iodide on the corrosion of cold rolled steel in trichloroacetic acid solution [J]. J. Mater. Res. Technol., 2020, 9: 15604
4 Desai P S, Vashi R T. Efficiency of xylenol orange as corrosion inhibitor for aluminium in trichloroacetic acid [J]. Indian J. Chem. Technol., 2010, 17: 50
5 Desai P S. Inhibition efficiency of thiourea and isomethylthiourea on aluminum corrosion in trichloroacetic acid [J]. Eur. J. Biomed. Pharmaceut. Sci., 2015, 2: 657
6 Ebenso E E, Okafor P C, Ekpe U J. Studies on the inhibition of aluminium corrosion by 2‐acetylphenothiazine in chloroacetic acids [J]. Anti-Corros. Methods Mater., 2003, 50: 414
7 Zhou D, Li X H, Lei R, et al. Adsorption and inhibition action of dodecyl dimethyl benzyl ammonium chloride on cold-rolled steel in trichloroacetic acid [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 82
(周 达, 李向红, 雷 然 等. 三氯乙酸中十二烷基二甲基苄基氯化铵在冷轧钢表面的吸附及缓蚀作用 [J]. 中国腐蚀与防护学报, 2024, 44: 82)
8 Wang L Z, Li X H. Adsorption and inhibition behavior of imidazoline on steel surface in trichloroacetic acid solution [J]. J. Chin. Soc. Corros.. Prot, 2021, 41: 353
(王丽姿, 李向红. 三氯乙酸溶液中咪唑啉在钢表面的吸附及缓蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 353)
doi: 10.11902/1005.4537.2020.096
9 Xie Y K, Li X H, Cui S L, et al. Synergistic inhibition effect of benzotriazole and potassium iodide on cold rolled steel in trichloroacetic acid [J]. J. Chem. Res. Appl., 2022, 34: 2701
(谢乂坤, 李向红, 崔双玲 等. 苯骈三氮唑与碘化钾对冷轧钢在三氯乙酸中的缓蚀协同效应 [J]. 化学研究与应用, 2022, 34: 2701)
10 Zhou K, Liu X H, Liu S. Corrosion inhibition of navel orangepeel extract to stainless steel in acidic medium [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 619
(周坤, 柳鑫华, 刘帅. 在酸性介质中脐橙皮提取物对不锈钢的缓蚀作用 [J]. 中国腐蚀与防护学报, 2023, 43: 619)
doi: 10.11902/1005.4537.2022.214
11 Elabbasy H M, Gadow H S. Study the effect of expired tenoxicam on the inhibition of carbon steel corrosion in a solution of hydrochloric acid [J]. J. Mol. Liq., 2021, 321: 114918
12 Akalezi C O, Maduabuchi A C, Enenebeaku C K, et al. Experimental and DFT evaluation of adsorption and inhibitive properties of Moringa oliefera extract on mild steel corrosion in acidic media [J]. Arabian J. Chem., 2020, 13: 9270
13 Wang X, Ren S F, Zhang D X, et al. Inhibition effect of soybean meal extract on corrosion of Q235 steel in hydrochloric acid medium [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 267
(王 霞, 任帅飞, 张代雄 等. 豆粕提取物在盐酸中对Q235钢的缓蚀性能 [J]. 中国腐蚀与防护学报, 2019, 39: 267)
14 Kaya F, Solmaz R, Geçibesler İ H. Investigation of adsorption, corrosion inhibition, synergistic inhibition effect and stability studies of Rheum ribes leaf extract on mild steel in 1 M HCl solution [J]. J. Taiwan Inst. Chem. Eng., 2023, 143: 104712
15 Wang Y, Qiang Y J, Zhi H, et al. Evaluating the synergistic effect of maple leaves extract and iodide ions on corrosion inhibition of Q235 steel in H2SO4 solution [J]. J. Ind. Eng. Chem., 2023, 117: 422
16 Zheng X W, Gong M, Li Q. Corrosion inhibition of mild steel in sulfuric acid solution by houttuynia cordata extract [J]. Int. J. Electrochem. Sci., 2017, 12: 6232
17 Chen W, Huang D X, Wei F. Inhibition effect of Brainea insignis extract against carbon steel corrosion in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 376
(陈 文, 黄德兴, 韦 奉. 铁蕨提取物对碳钢在盐酸中的缓蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 376)
18 Li X H, Deng S D, Li N, et al. Inhibition effect of bamboo leaves extract on cold rolled steel in Cl3CCOOH solution [J]. J. Mater. Res. Technol., 2017, 6: 158
19 Huang M, Wang L Z, Ma X Q, et al. Synergistic inhibition effect of walnut greenhusk extract and Nd(NO3)3 on aluminum in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 471
(黄 苗, 王丽姿, 马晓青 等. 核桃青皮提取物与Nd(NO3)3对Al在HCl溶液中的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2023, 43: 471)
20 Huang J X, Lv Y L, Li W R, et al. Report on China coffee industry in 2022 [J]. Trop. Agric. Sci. Technol., 2023, 46(4): 1
(黄家雄, 吕玉兰, 李维锐 等. 中国咖啡产业发展报告(2022) [J]. 热带农业科技, 2023, 46(4): 1)
21 Zhou X F, Zhao J, Zhao J J, et al. The development and countermeasures of the coffee industry in Yunnan province [J]. Chin. J. Trop. Agric., 2023, 43(6): 90
(周雪芳, 赵 俊, 赵家进 等. 云南省咖啡产业发展现状及对策 [J]. 热带农业科学, 2023, 43(6): 90)
22 Han H B, Yang C L, Li M J. The caffeine content determination in different parts of arabica coffee by HPLC [J]. J. Food Res. Dev., 2013, 34(6): 85
(韩洪波, 杨春琳, 李敏杰. HPLC测定小粒种咖啡不同部位咖啡因含量 [J]. 食品研究与开发, 2013, 34(6): 85)
23 Esquivel P, Viñas M, Steingass C B, et al. Coffee (Coffea arabica L.) by-products as a source of carotenoids and phenolic compounds—Evaluation of varieties with different peel color [J]. Front. Sustainable Food Syst., 2020, 4: 590597
24 Silva M D O, Honfoga J N B, De Medeiros L L, et al. Obtaining bioactive compounds from the coffee husk (Coffea arabica L.) using different extraction methods [J]. Molecules, 2020, 26: 46
25 Zhang Y H, Fu X P, Liang W J, et al. Antioxidant activity and compsition of anthocyanins of crude extracts from Yunnan arabica coffee husk [J]. Food Sci. Technol., 2016, 41(5): 219
(张云鹤, 付晓萍, 梁文娟 等. 云南小粒种咖啡果皮粗提物花青素成分及抗氧化活性研究 [J]. 食品科技, 2016, 41(5): 219)
26 Tang M, Deng S D, Du G B, et al. Mikania micrantha extract/KI blend as a novel synergistic inhibitor for steel corrosion in concentrated H3PO4 solution [J]. Ind. Crops Prod., 2023, 193: 116237
27 Wu H, Deng S D, Li X H. Synergistic inhibition effect of Cuscuta Chinensis Lam extract and potassium iodide on cold rolled steel in hydrochloric acid [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 77
(吴 浩, 邓书端, 李向红. 菟丝子提取物与碘化钾对冷轧钢在盐酸中的缓蚀协同效应 [J]. 中国腐蚀与防护学报, 2023, 43: 77)
28 Tan B C, He J H, Zhang S T, et al. Insight into anti-corrosion nature of Betel leaves water extracts as the novel and eco-friendly inhibitors [J]. J. Colloid Interface Sci., 2021, 585: 287
29 Lei R, Shi C J, Li X H. Corrosion inhibition of aluminum in HCl solution by Flos Sophorae Immaturus extract [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 939
(雷 然, 石成杰, 李向红. 槐米提取物对Al在HCl溶液中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2022, 42: 939)
30 Hassan H H, Abdelghani E, Amin M A. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Part I. Polarization and EIS studies [J]. Electrochim. Acta, 2007, 52: 6359
31 Gaudin T, Rotureau P, Pezron I, et al. Investigating the impact of sugar-based surfactants structure on surface tension at critical micelle concentration with structure-property relationships [J]. J. Colloid Interface Sci., 2018, 516: 162
32 Li X H, Deng S D, Lin T, et al. Inhibition action of triazolyl blue tetrazolium bromide on cold rolled steel corrosion in three chlorinated acetic acids [J]. J. Mol. Liq., 2019, 274: 77
33 Umoren S A, Li Y, Wang F H. Synergistic effect of iodide ion and polyacrylic acid on corrosion inhibition of iron in H2SO4 investigated by electrochemical techniques [J]. Corros. Sci., 2010, 52: 2422
34 Qiu L, Li X H, Lei R, et al. Inhibition performance of coconut diethanolamide on cold rolled steel in trichloroacetic acid solution [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 301
(仇 莉, 李向红, 雷 然 等. 椰油酸二乙醇酰胺对钢在三氯乙酸溶液中的缓蚀性能 [J]. 中国腐蚀与防护学报, 2023, 43: 301)
35 El Basiony N M, Badr E E, Baker S A, et al. Experimental and theoretical (DFT&MC) studies for the adsorption of the synthesized Gemini cationic surfactant based on hydrazide moiety as X-65 steel acid corrosion inhibitor [J]. Appl. Surf. Sci., 2021, 539: 148246
36 De Assunção Araújo Pereira S S, Pêgas M M, Fernández T L, et al. Inhibitory action of aqueous garlic peel extract on the corrosion of carbon steel in HCl solution [J]. Corros. Sci., 2012, 65: 360
37 Hu R S, Dong W J, Zong Y, et al. Analysis and evaluation of nutritional components of coffee peel from five different growing regions [J]. Chin. J. Trop. Crops, 2018, 39: 987
(胡荣锁, 董文江, 宗迎 等. 5个产区咖啡果皮成分分析与营养评价 [J]. 热带作物学报, 2018, 39: 987)
[1] ZHAN Fuyuan, LIU Xuanyi, HAUNG Shifu, LIU Shuaiqi, XU Yuanyuan, PAN Xigui, HE Hualin, LIU Guangming. Corrosion Behavior of SA210C Steel Beneath Deposit Film of Mixed Salts Na2SO4-NaCl in Air at 600oC[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[2] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[3] SUN Qiongqiong, JIA Xiquan, XU Zhenlin, HE Yizhu, FAN Guangwei, ZHANG Wei, LI Huan. Structure and Adhesion of Oxide Scales on Casting Billet of 304 and 430 Stainless Steels[J]. 中国腐蚀与防护学报, 2024, 44(6): 1649-1655.
[4] DONG Zheng, MAO Yongqi, MENG Zhou, CHEN Xiangxiang, FU Chuanqing, LU Chentao. Passivation Behavior of Steel Bar Subjected to Tensile Stress in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[5] TANG Liqing, LI Xianghong, ZHU Ping, WU Zhongfa, LEI Ran, XU Juan. Corrosion Inhibition Performance and Mechanism of Tween-80 on a Cold Rolled Steel in NH2SO3H Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1538-1546.
[6] XU Zhiyu, HU Qian, HUANG Feng, LIU Jing, LU Xianzhong. Effect of Crevice Geometry on Chemical Environment of Crevice Solution and Corrosion Behavior of 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[7] WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[8] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[9] YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[10] PANG Jie, LIU Xiangju, LIU Nazhen, HOU Baorong. Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[11] ZHAO Lianhong, WANG Yingqin, LIU Yuanhai, HE Weiping, WANG Haowei. Corrosion Behavior of Four Steels for Landing Gear of Amphibious Aircraft in Simulated Seawater[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[12] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[13] LI Xin, WEI Boxin, LU Yanghui, SUN Chen, YU Wentao, XU Meng, LIU Wei. Research Progress on Hydrogen Damage Mechanism of Pipeline Steel in Contact with Hydrogen Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[14] YANG Cheng, YANG Guangming, WANG Jianjun, MIAO Xueliang, ZHANG Yi, SUN Baozhuang, LIU Zhiyong. Effect of Temperature on Corrosion Behavior of 42CrMoE Low-alloy Steel in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(5): 1345-1352.
[15] WU Ming, REN Yanjie, MA Zhuochun, ZHANG Sitian, CHEN Jian, NIU Yan. High Temperature Oxidation Behavior of F55 Super Duplex Stainless Steel at 800-1000oC in 1.013×105 Pa O2[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
No Suggested Reading articles found!